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EVALUATION

MICROCIRCUIT PACKAGE STRESS ANALYSIS

The objective of this effort was to refine and summarize the past research on the
stress analysis of microcircuit packages and to compile a listing of material
properties for use in performing mechanical stress predictions. Included in this study
was the mechanical evaluation of leadless chip carrier packages. This investigation
showed that the formulas for traditional flatpacks are applicable to leadless chip

carrier packages. The following are some of the important results:

1. Formulas were developed to predict the maximum tensile stress in the lid-
to-wall seal; the central deflection of the lid, including the pressure required to crack
or collapse the lid or the base; and the equivalence of external pressure resulting
from centrifuge acceleration testing applicable to lid behavior and seal stress

resistence.

2. Centrifuge testing was determined to be less effective than the pull test in
stressing aluminum wires and wire bonds. However the centrifuge test can produce
significant flexural stressing of gold wires if the centrifugal force acts parallel to the

base of the package and perpendicular to the plane of the wire loop.

3. Theoretical analysis of the feasibility to perform drop test as a mechanical

reliability screen indicates that the concept is promising enough to warrant develop-

ment of a prototype test fixture.




4. Equations were developed to predict the damaging effects that edgewise

shock impact has on the lids and bases of microcircuit packages.

5. Sinusoidal vibration shows little promise as a mechanical screen for

detecting defective wires or weak wire bonds in microcircuit packages.

6. Formulas were developed to predict the maximum flexural stresses produced
in the lid-to-wall seal of a microelectronic flatpack under conditions of thermal-

shock screening.

In addition, five detailed appendices to this report were prepared. Appendix A
contains a compilation on the following microcircuit material properties: adhesives,
ceramics, fluids, glasses, nickel-iron alloys, solders, and wires. Appendix B contains
the flexural analysis of a two-companeni composite plate. Appendix C contains an
analysis of the approximate response of an elastic flat plate to a prescribed motion of
its boundary. Appendix D is a preliminary study of transistor thermal stresses due to
internal heat generation. Finally Appendix E describes proposed additional work, of
an experimental and theoretical nature, related to the stress and strength analysis of

annular glass seals in thermal shock.

_/;'(;é/% /7/‘;”&/‘/

PETER F. MANNO

Project Engineer




INTRODUCT ION

This report summarizes several years' research on the stress analysis
of microclircuit packaging performed at Syracuse University under the spon-
sorship of the Rome Alr Development Center and monitored by Mr. Peter Manno
of the Reliability branch of that agency.

In this research we have studied the response of various package com-
ponents to various stressful environments. The environments selected are
among those that the package might experience in the course of mechanical
screening by the methods of MIL-STD-883 (Test Methods and Procedures for
Microelectronics") or they are approximations and fdealizations of condi-
tions that the package might encounter in the field. Specifically, the
following environments are considered: external pressure, constant accel-
eration, impact, sinusoidal vibration, and thermal shock. One or wmore
chapters of the present report are devoted to each environment.

The package types that are addressed in this study are generally

those that can be described as flat and rectangular (which includes square).

Thus, flatpacks and dual-in-line packages are included. The newer package
types now under development, with names such as hermetic chip carriers,
leadless chip carriers, or ceramic chip carriers, are also included, for
an Investigation into the construction of these packages has shown that, 1
as far as the stress analyst is concerncd, they are very similar to the
traditional flatpacks. The specific package compounents considered include

lids, bases, glass side-walls, 1id-to-wall seals, annular glass lead-through

Pea

seals, internal wires and their bonds, and chip and substrate attachments.
The broad objective of this work 1s to direct attention, for ecach

environment, to those package arcas that are most directly affected by

-1~



that environment, and to show, by means of analysis, what the major effects
might be, in terms of stress and deformation. Thus, the information pro-
vided should be of interest mainly to two groups of people: (a) The package
screeners, who wish to know what screening techniques might or might not

be effective in attacking an area of anticipated mechanical weakness, and
what the severity level of an cffective screening technique should be in
order that sound packages will not be damaged by it. (b) The package
designers who, knowing what field or screening environments will be applied
to their packages, wish to design them strong enough to survive those
environments. The information in this report may also be of interest to
any cne involved in the diagnosis of mechanical damage to packages.

It will be seen that the analyses in this report rely hecavily on
approximations, simplifying assumptions, and idealized models wherever it
appears that such techniques can reduce a complex problem to a simple one
without loss of the essential aspects of the phenomenon being studied.
This, the time-honored approach of applied mechanics, has a number of
advantages over the usually more accurate detailed numerical analysis by
the finite element method, which is so popular at the present time. First,
it often yields a closed form solution from which the important dimension-
less parameters become evident. A knowledge of those é;rameters is very
helpful if one wishes to know, for example, whether or not a stressful
situatien can be relieved by changing certain dimensions or geometrical
form or by substituting one material for another. Such insights may be
more difficult to obtain from the finite element methods. Secondly, the
approximate solutions often give "ansuwers' more quickly and cheaply than
the finite element analyses, especially if one is not experienced Lln using

the latter on a routine basis. And thirdly. the environmental conditions,




material properties, and package construction detalls are often not known
well enough to justify the cost and time expenditure required for a more

precise analysis. Thus it is felt that the analysis rechniques and for-

mulas presented in this report can be of considerable value. Their ultimate

justification will, of course, depend on the reasonableness of the results
that they give and on their usefulness in leading to successful package
designs and screening procedures.

There are five appendices in the present report. Appendix A contains
a compilation of useful or conceivably useful material property data,
Appendices B and C some analytical derivaticns that were considered te be
of too detailed a nature to include in the m1in body. Appendix D is a
preliminary study of transistor thermal stresrses due to internal heat gen-
eration (the subject of internal heat generation is not treated elsewhere
in the report). And Appendix E described prcposed addirional work, experi-
mental and theovetical, related to the stress and strength analvsis of
annular glass seals in thermal shock.

Within each chapter or appendix the numbering of tables, equations
and figures starts from 1. If it is necessary to refer to an item in

another chapter or appendix, the location of the item will be specified.




Chapter 1 - EXTERNAL PRFSSURE

External pressure is employed in the MIL-STD-883 scal hermeticity test
(test method 1014.2 of Reference 1). This environment tends to broduce in-
ward bending of the lid and base of rectangular flatpacks, which can be
especlally pronounced in the larger size packages. If cufficlently high,
the external pressure can cause cracking of ceramic lids or bases and exces-
sive deflection or collapse of metal lids. The relatively short stubby
sidewalls provide a considerable amount of elastic restraint against rota-
tion of the edges of the 1lid and base. Thus, there is also a transfer of
bending woments through the lid-to-wall and base-~to-wall seals into the
walls. If the bending moments are sufficiently high, they can damage the
seals, or, if the walls are mainly of glass, they can fracture the glass.
The metal lids of some packages have their edges thinned down to a small
fraction of the main 1id thickness.* In that case the transfer of bending
moment from the 1id to the wall is not likely to be a problem. The thinness
of the edge, in conjunction with plastic yielding of the 1lid material, will
severely limit the maximum developable bending moment in the edge of the
1lid — in effect, providing a barrier against the transmission of excessive
bending moment across the lid-to-wall seal.

All of the above-mentioned effects of external pressure are assessed
quantitatively in this chapter, which is based largely on Reference 2. For
simplicity, the discussion will generally be in terms of the 1id; it should
be understood, however, that much of what 1s said will apply with obvious

modifications to the base as well. Usually, the base-to-wall connection is

* The increased flexibility achieved thereby makes the 1id edges conform
better to any unevenness in the mating wall surface, thus promoting seal
tightness.
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much sturdier than the lid-to-wall connection (in fact, the base and wall
are integral in some packages)., Therefore, when discussing seal stresses
due to the transmission of edge bending moments, it is appropriate for the

discussion to be in terms of the 1id, rather than the base.

I. DESCRIPTION OF PACKAGES

The package 1s rectangular, as shown in Figure 1, with the cavity
having width a, length b, and height h. The dimensions a and b are measured
at the top of the cavity, and a is the shorter of the two if they are un-

equal. The dimension h is assumed to be small compared to bd.

If ceramic, the lid is assumed to have a constant thickness t in the

region above the cavity and to be no thinner than t in the edge regions
above the walls, (Fig. 2). If metallic, the 1id is assumed to have a con-
stant thickness t in the region above the cavity and is allowed to have a
smaller thickness te in the edge strips above the walls:; if the 1lid does not
have thinned edges, te should be replaced by t in the formulas to be developed.

The Young's modulus E (modulus of elasticity) and the Poisson's ratio
v of the 1id material are assumed to be known. For most metals v can be
taken as 0.3 with little error. For ceramics a v of 0.22 is reasonable.
Knowing E, t and v, one can compute the elastic "plate flexural stiffness" .

D of the lid as follows:
D = Et3/[12(1-v?) ] (1)

The basic flexural strength of the lid is assumed to be known in

terms of its ultimate bending moment per unit width, which will be designated f\

as m in the interior and m, in the edge regions, with the latter designation
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being pertinent only to metallic lids with cdge zoune thickucess t, smaller

than the main thickness t. These ultimate bending mowents per unit width
can be computed from the bending modulus of rupture % of the material via

the formulas
= 2 - 2
m =gt /6 m, obte/é )

By means of tests on cantilever strips cut from commercially available

Kovar lids (see Appendix A, Section 5), the writer has estimated % for

such 1lids to be 107 ksi,with a coefficient of variation of 8 percent. For

ceramic lids 0, can be obtained from the manufacturer's literature, where

it is sometimes referred to as the "flexural strength."
There are different physical actions associated with the development

of the ultimate bending moment, depending upon whether the lid is a ductile

metal, like Kovar, or a brittle ceram;c. In the former case, m and m, are

equal to the fully plastic bending moments per urit width, and they are

associated with the development of very high curvatures without any fracture

of the material. In the latter case, m is the bending moment per unit

width at which fracture occurs, and there is little or no plastic deformation

preceding the fracture. .
Two kinds of wall construction will be assumed, namely "uniform" and .

"stepped,” as illustrated in Figures 2(a) and (b). In the former, which is

typical of an all metal package, the material and the thickness w are
constant along the entire height of the wall. 1In this case Ew and v, will

denote the Young's modulus and Poisson's ratio of the wall material and

D, = Eww3/[12(1-vw2)] (3a)




will denote its plate flexwral stiffness. In the 3-segment stepped wall
i1llustrated in Figure 2(b), the material and/or the thickness are only
plece-wise constant. In such a wall, w, wl, v,y will denote the thick-
nesses of the  three segments, starting from the top. Ew‘ El, E,

will denote their respective Young's moduli; v , v., v their Poisson’s
4 w 1 2

ratios; and Dw’ Dl’ D2, their plate flexural stiffuesses, defined as

follows:
E w3 E.w, 3 E.w, 3 ;
- - 22 ;
D = L s D1 : 11 s D2 2 (3b) |
Yoo12a-v ) 12(1-v,?) 12(1-v,?)

The top of the top segment of the wall will have a height above the base
that is equal to h, the depth of the cavity. The heights of the tops of 1
the remaining segments above the base will be denoted by h1 and h2, .
respectively, as indicated in Figure 2(b). In a typical three-segment

stepped wall 1like the one shown in Figure 2(b), the top segment would be

a metal seal frame and the other two segments would be of glass. All four

walls are assumed to be identical in construction and cross section.

Two kinds of lid-to-wall seal will be considered: the "wide seal” and
the "narrow seal,” which are illustrated in Figure 3. In the former, the
seal width LA is essentially equal to the thickness w of the top of the

wall. This kind of seal would result typically from the use of a solder

preform. In the narrow seal, which might result from an electrical seam
welding process, the seal width L is much smaller than w, and the seal is
confined to the outer 1limits of the lid-wall interface. In such a seal, e

will denote the distance from the inner edge of the wall top to the middle

of the seal width (sce Figure 3(b)).
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Flgure 3.~ Lid-to-wall seal geometries,
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{a) Unequal moments at (b) Equal moments at
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wall. wall.

Figure 4.~ Wall flexure due to bending moments applied at top and bottom
by 1lid and base,




I1. ELASTIC RESTRAINT FURNISHED BY THE WALLS

It will be assumed that wunder hydrostatic external pressure the 1id
may be regarded as a uniformly loaded rectangular plate, with width and
length equal to the cavity dimensions a and b, and with edges elastically
restrained against rotation by the walls of the package. Therefore it
will be necessary to evaluate the degree of elastic restraint furnished by
the walls to the edge of the lid, and to that end the walls will be
regarded as wide vertical beams of length (i.e., height) h. At any loca-
tion within a wall there will be a local rotation 8 (in radians) and a
local bending moment intensity M (in-1b/in) at the upper end, and corres-
pondingly a local rotation Bb and local bending moment intensity Mb at
the lower end (see Figure 4), where M and Mb are furnished by the 1lid and
base, respectively, to the wall. Thus the lid "sees" an elastic restraint
against rotation of stiffness k = M/9.

The simplifying assumption Mb = M will often be appropriate as an
approximation. Making this assumption and analyzing the wall as a wide
beam of length h, we can solve for 6 as a linear function of M and thus

arrive at the following formula for k:

k=a- (4)

where o is a dimensionless constant whose value depends on the nature of

the wall. If the wall is uniform, as in Figure 2(a),

a =2 (5a)

If the wall is a threc-sepment stepped wall, as in Figure 2(b),




a = 2 (5b)

Setting D1 = D2 in Eq. (5b) reduces it to (5a), as it should.

For later use we now introduce a dimensionless wall stiffness para-
meter, K, which 1is essentially a measure of the ratio of the wall flex~

ural stiffness to the 1id flexural stiffness. K is defined as follows:

D
Z a
D

>

4

(62)
71'2 2

ol

= k
K = ;2 _(D/a) =

If the Poisson's ratios v and v, are equal, this definition reduces to

E 3

K=o (D o (6b)

ERL
=i

In graphs to be given later, certain quantities are plotted as functions
of arctan K, rather than as functions of K. Figure 5 will permit an easy
conversion from K to arctan K. For most packages arctan K will be fairly
close to the upper limit of n/2, or 1.57, implying that the edges of the
11d are very close to being clamped by the walls.

If the base, rather than the 1id, is under consideration, the per-
tinent elastic restraint stiffness is kb = Mb/eb rather than k. When
the assumption M = Mb is appropriate, the following formulas are obtained
for kb from the analysis of the wall as a beam:

DW
kb = 2 Tl- (73)

-11-
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1f the wall 1is uniform, as in Figure (2a); and if the wall is stepped, as

in Figure 2(b),

D,
by, = (7b)
where
(7¢)

Q. = 2
b b hl-th-n)2 th-h)2-(h-h)2 (h-h)?

D 2, 2 v, 1

h2 DZ Dl Dw

When studying the base, the assumption M = 0 will be more appropriate than
M= Mb if the 1id has thinned cdges which because of their thinness and
plastic yielding cannot exert much moment. In that case, in place of

(7a) and (7c) have, respectively,

D
o oy
(7e)'
. - 3
b, [ - -1y m-npP-w-np? wm-n)’
—= + +
h3 D2 Dl Dw

And the dimensionless wall stiffness parameter K should then be computed

from the formula
K= — —5—0 (8)
m

instead of (6). When dealing with the base, the dimensions a and b should,
of course, be based on the cavity dimensions at the bottom of the wall,

rather than at the top of the wall, and D on the properties of the basc. ,




I11. FORMULAS FOR MAXIMUM TENSILE STRESS IN THE SEAL

A, ‘lincarly Elastic Lid.- Under the action of a uniform gage pres-
sure p (psi), reactions will develop along the edges of the 1id, as
depicted in Figure 6. These will include bending moments of varying inten-
sity M (in.-1b per in.), due to the restraint against rotation furnished by
the walls, and an effective vertical shear of varying intensity V (1lb per
in.). The maximum values of M and V occur at the middle of the long side and,
as long as the lid is linearly elastic (i.e., obeys Hooke's Law), can be !

expressed as

= . pa?
Mmax n, - pa 9) 1

vmax =n, - pa (10)
{

where n and n, are functions of the elastic restraint parameter K and the

aspect ratio b/a of the 1lid. The values of ny and n, associated with any

given configuration can be obtained from Figures 7 and B, respectively. *

The maximum tensile stress Smax in the seal is most likely to occur at

the middle of the long side, where the bending moment transmitted from the

*In Figure 7 the data for a clamped plate (K=«, arctan K=1n/2) are .
taken from Table 35 of Reference 3. All other data in this figure are
based on the analvsis in Appendix A of Reference 4. In Figure 8 the data
for a simply supported plate {arctan K=0) are from Table 8 of Reference 3.
The data for a clamped plate (arctan K=71/2) are based on the analysis in
Appendix B of Reference 4. The curves for elastically restrained plates
(arctan K = .4, .8, 1.2) were inserted by interpolation, assuming a linear
variation of njy with respect to arctan K, which is approximately the varia-
tion obtained for ny. 1In view of the swall change in n3 in going from
simple support te clamping (around 6% at the most) and the small role that
ny will play in the subsequent development, the linear interpolation cmployed
in Figure 8 {s considered acceptable.



Figure 6.~ Reactions on a uniformly loaded rectangular plate
with edges elastically restrained against rotation.
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1id to the wall is a maximum. At this location the bending moment Mmax

and vertical shear vmax are transferred to the edge strip of the cover

directly over the wall, as shown in Flpure 9.* The edge strip transfers

these in turn to the top of the wall, along with the force pw per unit length

due to hydrostatic pressure p acting at the top of the edge strip. Thus, the

edge strip is essentially a loading device to transfer the forces shown in

Figure 9 to the wall below it.
The states of stress assumed to be developed at the top of the wall, as

a result of the forces applied to it by the edge strip in the middle of the

long side, are shown in Figure 10, 1In the case of a wide seal we are

assuming a linear variation of normal stress across the thickness of the
wall. 1In the casc of a narrow seal we assume instead a uniform tensile

stress in the seal area together with a concentrated compressive line load

along the inner edge of the wall. In both cases the maximum tensile stress

Smax in the seal material occurs at the outside edge.
The stress distributions of Figure 10 must be statically equivalent to

the loading of Figure 9. From this equivalence one can deduce the following

expressions for the maximum tensile stress in the seal:

v
s =<M ‘v _>6(p+L) (11a)
max max max 2/ w*- w

in the case of a wide seal (Figure 10(a)), and

1
Mmax 7P (11b)

*Recall that for analytical purposes we are considering the lid to end

at the inner edges of the wall.
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Substituting for M and

{n the case of a narrow scal (Figure 10(b)). ax

their known values from Equations (9) and (10), we obtain the following

\Y
max
formula for computing Smax:
2
= p(2 (12)
Smax p(w) n
where
n=6n +2n Yo (13a)
1 2 a a
in the case of a wide seal, and
. 1 w2, w?
n=ln) -5 (a) ] ow (13b)
in the case of a narrow seal, (Fig. 10b). In extreme cases Fquation (12)

will give negative values of qux’ implying that no amount of external

<

pressure can produce tension in the seal.

Brittle materials, such as ceramics, obey Hooke's law reasonably well
up to the point of fracture. Thus, Equation (12), which is based upon
Hooke's law, may be assumed to be valid for ceramic 1lid packages as long
as the pressure p is less then the 1id collapsing pressure Puitimate dis~-
cussed in Section IV.

B. Inelastic Lid.- Equation (9) is based on Hooke's law and it there-
fore predicts a linear relationship between Mmax and p, which is represented
by the line OBEA in Figure 11. In the case of a brittle material lid this
line may be considered valid for all pressures up to the point of fracture.

If the 1id is of a ductile metal, however, at some point, represented by

B in Figure 11, the pressure will become high enough to produce plastic
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(i.e., inelastic) behavior. The 1id will not fracture, but the graph of

M versus p will depart from the straight line, and Mmax will approach the

max

fully plastic bcnding moment m, asymptotically along a curve such as OBCD.
The determination of this curve 1s a difficult problem in elasto-plastic
plate analysis. We shall avoid this problem by simply approximating the
curve OBCD by the two straight-line segments OE and ED. That is, Equation
(9) will be considered valid as long as its right side, nlpa2, is less

than m, and Equation (9) will be replaced by
M =m (14)

if nlpa2

equals or exceeds LI Equation (10) is also based on Hooke's law,
and its validity will therefore also break down at the pressure associated
with point B of Figure 11. We shall ignore this, however, and continue to
use Equation (10) for all pressures, on the ground that Vmax generally plays

a smaller role than Mmax in producing stress in the seal and we therefore do

not need to know it as precisely. Thus, the sole effect of 1id plasticity

in our considerations will be to replace Equation (9) by (14) if nlpa2
equals or exceeds m.3 that is, if
2 -
p2m/na’zp (15)

We shall call the right side of this inequality the transition pressure and,
as indicated, represent it by the symbol pt. It is the pressure associated
with point E in Figure 11. The corresponding value of Smax we shall call

t ti ¢ s d i .
the transition stress and represent it by Smaxt Smaxt can be evaluated by

substituting the transition pressure P, = me/nla2 for p in Equation (12),

with the result

-22-
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S = men/wzn (16)

max 1

t
When the inequality (15) is satisfied, we may compute qux from Equa-
tions (11) by substituting m, for Mmax and the right side of Equation (10)

for V . The result is
max

6ém

- & a._
Smax B w2 + p(2n2 w 1) (an

for a wide seal, and

2
=& _ ¥ (18)

for a narrow seal.

Equations (17) and (18) show that now the worst case (i.e., the largest
positive Smax) does not necessarily occur at the highest pressure. This is
because the p term in Equation (18) is always negative and the p term in
Equation (17) is negative if 2n2 s'- 1 is negative. Thus, increasing p can
cause a reduction in Smax' To obtain "worst-case' formulas, we must replace
p in Equation (18) by the lowest value it can have and still satisfy condition
(15), that is, by the transition pressure P and we must make the same
replacement in Equation (17) if 2n2 % -1 is negative. Consequently, given
any existing pressure p which satisfies (15), the maximum seal tension

produced In the course of applying that pressure (not necessarily the seal

tension at that pressure) is:




6me a
-—;—+ P (?.n2 v 1)
W
Smax = the larger of and (19a)
6me e a
= + - (2n2 v -1)
1
for a wide seal; and
n m
e w __e 1 w2
max we n,a2 (Zw e) T we (- 2n (a) ] (19b)
s 1 s 1

for a narrow seal. Equations (19) can give negative values for Smax’ which
means that the given pressure has produced no tension in the seal. Like
Equation (12), they are limited to pressures below the 1lid collapsing pres-

sure p discussed in Section IV.

ultimate

C. Summary of Formulas for S .~ The formulas for S developed in
max max

the two preceding sections are summarized in Table 1.

D. Application to Design.- The formulas of Table 1 can be of use

both to the designer, whose objective is to design a package that will
remain hermetic under a specified screening pressure p, and the user, whose
objective is to select an appropriate screening pressure p that will worsen
or destroy the hermeticity of packages with poor quality seals.

Considering first the designer, let us suppose that he knows the
sealing material to be used and has a value for the allowable tensile stress
S 1 of that material. Then his criterion for a satisfactory lid-to-wall

al

seal design, from the point of view of retaining hermeticity under a given
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external screening pressure p, should be that Smax’ as given by the appro-

priate box of Table 1, be less than Sa That is,

11°

S (20)

max hl Sall

In selecting Sall the designer should of course be conservative. If !
Sall is taken as the median tensile strength of the sealing material, then
packages designed on the basis of the equality sign in Equation (20) will
have a failure rate of approximately 50% even if properly sealed. (The
failure rate will be still higher for a mixture of properly and improperly
sealed packages.) On the other hand, if the designer selects for Sall the
lowest l-percentile value of the material strength, then he should expect
only a 1% failure rate for properly sealed packages designed on the basis

of Equation (20) with the equality sign. The designer should also consider

the possibility of the deposited sealing material or its interfacial com-
pounds having a different tensile strength than the bulk sealing material.
In the case of solder, the deposited sealing material may be stronger than
the bulk sealing material because of the restraint against lateral cogtrac—

tion in a thin solder layer in tension (see Section 6 of Appendix A.)

There is one special precaution to be observed in applying Equation
(20) to a stepped-wall package (Figure 2(b)). In such a package the upper-
most wall segment is typically a metal scal frame, while the segment below
it is of glass. In that case, the critical seal could be the glass-metal
interface (or the glass itself) at the underside of the seal frame, rather
than the metal-io-metal bond at the top of the seél frame. Therefore, the
desipner should be sure that the inequality in Equation (20) 1is satisfied

for both seals - the usually wide (but possibly narrow) one at the top of

-26-




the seal frame, with S based on the tensile strenpgth of the sealant

all
there; and the wide seal of width w at the underside of the seal frame, with
S811 based on the tensile strength of the glass.

It could happen that the designer has very little data on the distri-
bution of tensile strength values for the sealing material, or even on the
mean strength, but he does know that a certain previously designed similar
package, designated as I, when properly sealed with the same material had
an acceptable failure rate F under a screening pressure of Pr- Then in
order for the new package, designated as Il, to have a failure rate no
greater than F when properly sealed and subjected to its screening pres-
sure Py, he should so design package I1 that its Smax is no greater than

that of package I. Thus, his criterion for a satisfactory design of pack-

age II should be

(_.) =<(__) (21)

where both Smax's are taken from Table 1, but not necessarily from the

same box of that table.

E. Application to Screening.- Turning now to the user of an already

designed package, let us first suppose that he has a minimum acceptable

value, S for the tensile strength of the seal, and he wants to be

accept’
sure of rejecting all packages with seal strengths less than that. Then

he should select a screening pressure p such that the Smax given by Table 1

-27-




is equal to or greater than Saccept’ or, if that cannot be accomplished,

a screening pressure p that will make Smax as large as possible.*

In the case of a ductile material 1lid, the procedure for accomplish-

ing this depends upon whether saccept is less than or greater than the

»

t

transition stress Smax defined by Equation (16). 1If S
t
the elastic formula (12) applies. Replacing Smax in this formula by

< S
accept max

Saccept’ and solving for p, we obtain

a2 -l
P = S,ccept! G M (22)

as the appropriate screening pressure. On the other hand, if

. a
saccept > smaxt' Equations (19) apply. Then for a wide seal with 2n2 > -1

positive, we may equate the top expression of (19a) to saccept and solve

for p to obtain the following formula for the appropriate screening pres-~

6m ‘a -1
P = Saccept - ‘——wz 2n2,,-; - 1) | (23)

. a .
In the case of a narrow seal, or a wide seal with 2n, — -1 negative, it

sure:

2w
is not possible to achieve S =8 when S > S , for in
max accept accept max
those cases Smaxt is also the largest achievable value of Smax' Then we .

must settle for a screening pressure that will give Smax as large a value

as possible; since that value is Sm s, the required pressure is k

ax
t

*We are assuming here that whether good or poor the seal quality is uniform

around the periphery of the secal, so that during screening seal stresses [
of damaging magnitude need not be present along the englre periphery, but %
may be localized at the middle of the longer sides.

-28- -




P=p = me/nla2 (24)

In the case of a ceramic 1lid, linearly elastic behavior will be
assumed in the 1id up to fracture. Thus, Equation (22) may be used in
such a case as long as the screening pressure it provides is less than the
1id collapsing pressure Piltimate discussed in Section IV.

The screening pressure formulas developed in this section are sum-
marized in Table 2. The pressures therein should be regarded as minimums.
Larger pressure, applied through stepwise increments, can be used as long

as they are below p and do not cause undesirably large 1lid deflec-

ultimate
tions. The effect of using a pressure that is higher than the one specified
in the table is to enlarge the portion of the 1lid periphery in which the

extreme-fiber seal stress exceeds S

The use
accept

or has equalled S
max

of larger pressures may be particularly advisable when the 1lid is ductile,

in view of the fact that the simplified curve OBED of Figure 11, on which

the tabulated formulas are based, tends to over-estimate Mnax'

Table 2.~ Summary of Formulas for Appropriate Screening Pressure

Ductile Lid

> S
accept maxt
Brittle
Lid s <s Wide Seal
accept — maxt " Narrow
a
2n2 v 120 2n2 = 1 <0 Seal
6m
e
S S e " TS m
p = ac;egt . accep w2 o= e
2
& n a_ n,a
w 2n2 w 1 1
[Eq. (22)] [Eq. (23)] [Eq. (24))
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In order to use¢ the formulas in Table 2, one must decide on a value of

the minimum acceptable seal strength, S It is conceivable that the

accept’

screener of a package will not have enough information about the sealing

material to be able to specify a value for S but he might know that

accept’
in the past a certain pressure pp was considered suitable for screening a
certain package, designated as package T, that employed the same sealing
material as the package now under consideration, which will be designated
as package II. Then the Smax produced in package I by its screening pres-
sure p; should be an acceptable maximum seal stress in package II. Thus,

the following rule can be used to arrive at a value of § for package

accept

I1:

i}
~
w

(s

accept ) produced by Py (25)

max
I

11
where the quantity on the right side is obtained from the appropriate

formula of Table 1.
1v. LID COLLAPSING PRESSURE

It is important, in both screening and design, to be able to esti-~

mate the 1lid collapsing pressure p , and in this section formulas

ultimate
are presented to facilitate making such an estimate. In presenting these
formulas we consider separately 1ids of a brittle material, such as cer-
amic, and lids of a ductile material, such as Kovar, since the mechanism

of collapse is different for both types.

A. Brittle-Material Lids.- For a lid made of perfectly brittle

material it could be assumed that fracture will occur when the calculated

maximum tensile stress O nax in the 11d equals the ultimate tensile

strength 0y of the material. Ccramics employed for microelectronic




packaging may not, however, be perfectly brittle in flexure. This is evi-
denced by the fact that quoted values of the bending modulus of rupture %
(also called “flexural strength') of such ceramics are somewhat higher than
the quoted values of 9, (see Section 2 of Appendix A). Thercfore it may

be somewhat more realistic to take the following as a criterion of fracture

or collapse of supposedly brittle-material lids:
a =g (26)

In order to apply this criterion, one must have information on dmax as a
function of the applied pressure p. Information of this kind is presented
in Figure 12, which is based mainly on Reference 5 and which takes into

account large-deflection effects. Figure 12 gives O max through a dimension-

less constant n., related to omax as follows:

7

= £y2 27
omax - n7E (Z) (27)

This relationship permits the collapse criterion (26) for brittle-material

lids to be written as

n =

32 2
7 E

A (28)
The graphs of n, (Figure 12) require some discussion: Although data
for n, are avallable for K values ranging from 0 to = (arctan K ranging
from 0 to 7/2), data for n, are available only for the limiting cases of
simple support (K = arctan K = 0) and clamping (K = =, arctan K = 7/2).
Therefore interpolation between a K = «» graph and a K = 0 graph of Figure

12 may sometimes be needed in estimating n A linear interpolation based

7°

on arctan K, though non-rigorous, should be sufficiently accurate for

=31~
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Graphs for determining the maximum tensile stress 0 hax in
uniformly loaded rectangular plates. Curves adapted from
the following parts of Reference §: (a) top graphs on p. 50,

(b) middle graphs on p. 51, (c) middle graphs on p. 50, and
(d) middle grapns on p. 52.
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practical purposes; for most large flat-packs the assumption K = « would

also be suitable. A second difficulty associated with the estimation of 0,
derives from the fact that the large-deflection behavior of a plate is
sensitive to whatever restraint the platce edges are under, in regard to
their movement in the plane of the plate. Graphs (a) and (c¢) of Figure 12
assune that such restraint is negligible; these graphs are felt to be appro-
priate when the wall stretching stiffness (e.g., Ewhw in the case of a uni-
form wall) is small compared to the lid stretching stiffness, Eat. Graphs
(b) and (d), on the other hand, assume that the edges are free to curve
inward but not to strain along their length; these graphs are more appro-
priate for cases in which the wall stretching stiffness ls large compared to
the lid stretching stiffness. For most large flat-packs Figure 12(c) should
be appropriate.

Let us denote by p the collapse pressure estimate obtained

ultimat:e1

through the use of Equation (28) in conjunction with the graphs of Figure 12.
Because of the above-discussed difficulties and uncertainties connected with
the use of those graphs, there will always be some question as to the reli-

ability of p as a true measure of the collapse pressure. It is

ultimate1

therefore recommended that a second estimate, , be obtained by

pultimate2
assuming O nax to be the extreme-fiber stress at the edge of the 1lid in the
middle of the long side, where, through Equation (9) and Figure 7, we have
fairly accurate information about the bending moment as a function of both

p and K in the small deflection régime. Accordingly, we write

2
6Mmax 6n1pa

o = = =

max
t2 t2

(29)

then substitute this expression into Equation (26) and solve for p, to obtain




pultimatez = EEI @ (30

as the second estimate of collapse pressure. Because it is based on a res-
tricted search for 9 nax (a search restricted to the middle of the long edge

of the 1id), p is likely to be an upper bound to the true collapse i

ultimate2
pressure. Therefore, it is advisable to select the smaller of Pultimate
1
and pultimatez as the governing estimate of the collapse pressure of a

brittle-material 1lid. 4

B. Ductile-Material Lids.- Collapse of ductile plates under lateral

pressure is usually assumed to occur through the formation of plastic-hinge

lines (yield lines). An analysis of a ductile 1id on this basis (Ref-

erence 2) leads to the following collapse pressure:

2(me+m)
Pyltimate = "8 a2 (31
where
n=4+323+35(?-)2 (32)
8~ b : b

and LR and m are respectively the edge and interior fully plastic bending
strengths of the lid. For a constant-thickness 1lid (te =t), m, and m are
equal. To facilitate the use of Equation (31) a graph of Equation (32) is
plotted in Figure 13, Equation (31) is likely to be conservative, because
the strengthening effect of membrane action was not considered in its

derivation.
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V. BASE COLLAPSING PRESSURE

If the base consists essentially of one component, say Kovar or
ceramic, its collapsing pressure can be determined by the methods of the
preceding section. It often happens, however, that in a metal package the
original metal base will have a ceramic substrate bonded to it over most
of its extent, thus, 1in effect, forming a new base which is a two-component
composite like that shown in Figure 1 of Appendix B. It is this type of
base whose Pultimate V& will now estimate.

For the sake of concreteness we will take the upper component in
Figure 1 of Appendix B to be the Kovar (or other metal) and the lower com-
ponent to be the ceramic. The external pressure is therefore acting
downward upon the upper component. As indicated in the figure, the Young's
modulus, Poisson's ratio, and thickness of the upper component will be

denoted by E v, and t

11 l l’

E2, v, snd tz. The total thickness, tl + tz, will be denoted by t.

respectively; those of the lower component by

Our basic assumptions will be that the base is a two-component clamped-

edge plate obeying Hooke's law and undergoing small deflections, and that,
in effect, collapse will occur due to cracking of the ceramic when the
maximum tensile stress in the ceramic becomes equal to the flexural strength ;
ob (i.e., modulus of rupture) of the ceramic.

The notation for the extreme-fiber stresses in the two components of
the plate is shown in Figure 4 of Appendix B, where the stresses are denoted

o o , etc. (the logic behind the subscripts is self-evident).

’
. *12
Visualizing the curvaturecs of the clamped plate under external pressure, we

can anticipate that there are two candidates for the maximum tensile stress




in the ceramic. They are the stress ox at the middle of the long sides
21
(i.e., at x=0, y =b/2) and the stress 9 at the middle of the plate
22
(x=a/2, y=b/2), (Under internal pressure, 1l.e., upward or negative

pressure, the maximum tensile stress candidates would be cx22 at the
middle of the long sides and °x21 at the center of the plate.) Both
candidate maximum stresses have to be evaluated, and the larger governs.
The theory for evaluating these stresses is developed in Appendix B,
where it is shown that existing data for homogeneous (single-component)
plates can be used for this purpose. On the basis of this theory the
stress calculation consists of the following main steps: First compute
the plate flexural stiffness D and flexural Poisson's ratio Vv through the
sequence of equations (1) through (7) of Appendix B. Secondly, from the
~
appropriate line of Table 1 of Appendix B, evaluate the bending moments
Mx and M at two locations, the center of the plate and the middle of the
longer edges. Those bending moments apply, strictly speaking, only to the
case v = 0.3. The error will usually be very small if they are assumed
to hold also for the value of v obtained from Equation (5) of Appendix B.
However, if desired, for each location one can readily compute corrected
bending moments M; and M; from Equations (19) or (20) of Appendix B if
the v yielded by Equation (5) has a value other than 0.3, Finally, with
the bending moments known for each location, Equations (17) of Appendix B
are used to calculate the candidate ceramic tensions. Specifically, the
third equation of the set (17), with Mx and My set equal to the bending

moments or corrected bending moments for the middle of the longer sides,

will give the Gx ceramic stress at that location; and the fourth equation
21
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of the set, with Mx and My being those that apply to the center of the plate,
will give the ceramic stress oxzz at the center of the plate. The quantities
Vv and S required in Equations (17) will already have been determined in the
course of calculating D and v. If Mx = My = M, Equations (18) may be used
instead of (17).

The calculation procedure just described will be demonstrated in
Section VIII. In connection with that demonstration, a suggestion will also
be made as to the handling of plastic hinges that might develop in the
Kovar 1f there is a small gap between the periphery of the substrate and
the walls of the package. The ﬁossibility of plastic hinges (at sufficiently
high pressures) arises because in the region of this gap the Kovar must

provide the edge bending woments of a clamped plate without any help from

the ceramic.
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VIi. LID DEFLECTION

The maximum deflection Gmax of the lid under any pressure p will occur
at the center of the 1id. Both the designer and the user must concern them-
selves with this deflection, in order to insure that during any screening the
1id will not come in contact with the contents of the package. In this sec~
tion we present formulas and graphs for estimating Gmax’ We consider sepa-
rately the brittle-material and ductile-meterial lids. In the first case,
plasticity (departure from Hooke's law) will play a negligible role; in the
second case it will play a significant role.

A. Brittle-Material Lids.- An analysis based on the small-deflection

theory of elastic plates is carried out in Appendix A of Reference 4 and

leads to the following result:

L 3
= pa_ _ -v2) £ (&
6ma‘.; " D 12(1 = v9) E (t) an

4 (33)

where n, is the function of K and b/a plotted in Figure 1l4. With v taken

as 0.3, this formula reduces to

3
= P (2
Gmax 10.92 E (t) ané (34)

It is well known, however, that small-deflection theory tends to over-

estimate the deflection. Figure 15 therefore presents curves from which a .

correction factor n based on large-deflection theory, can be estimated.

5’
(The graphs of Figure 15 are for the same four boundary conditions as those

of Figure 12, and the earlier discussion of those boundary conditions is

Rt i

pertinent here as well.) With this correction factor included, the above

formulas now read \
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3 3
= 2y P (2 : P (3
& = 12(1-v¥) ¥ (t) an,n 10.92 E (t) an,n (35)

max

5 5

This equation can be considered valid for brittle-material lids at all
pressures up to the lid-collapsing pressure Pultimate”
B. Ductile-Material Lids.- For lids of a ductile material, like Kovar,
Equation (35) will apply in the initial stages of pressure application.
When the pressure becomes high enough, however, Hooke's law breaks down
because of the initiation of plastic flow in the material. As the pressure
is increased beyond this point, the regions of plastic deformation are en-
larged and Equation (35) becomes increasingly in error on the low side.

Finally, the collapse pressure p is reached, at which the 1id

ultimate
deflections increase virtually without limit.

The precisc determination of lid deflections in a ductile 1id beyond
the range of validity of Hooke's law is a difficult computational task
which will not be attempted here. Instead, a simplified model of the lid's
behavior will be proposed which will lead to an approximate estimate of the
central deflection with very little computational effort.

The proposed model breaks the entire load-central deflection history
into three régimes which are represented by the curve segments OA, AB and
BC of Figure 16. The first segment, OA, corresponds to linearly elastic
material behavior and it is the initial portion of the load-deflection
curve CC defined bv Equation (35). The second segment, AB, is part of the
curve DE, which is the pressure-versus-deflection curve of a simply sup-
ported lincarly elastic plate subjected to increasing pressure p in con-
Junction with a constant and uniform restraining moment of m, per unit
width along its periphery. And the third sepment, BE, represents the N

d lefl : .
indeterininate deflections occurring under the collapse pressure Pultimate




// P ultimate

0 6ma X

Figure 16.~Simplified graph (OABC) of central deflection

of ductile 1id as a function of pressure.




Thus, the model assumes an abrupt transition at A from a truly elastic
behavior (OA) to a regime AB in which the fully plastic bending moment is
developed all around the boundary while the interior of the 1id still
behaves elastically, then another abrupt transition at B to a regime BC of
fully developed interior as well as exterior yield lines creating a collapse
mechanism. In actuality, gradual transitions occur from one regime to the
next, as suggested by the dashed curve, but such transitions are not included
in the present model.

In order to make use of the proposed model, one must have an equation
for the middle portion, AB, of the graph of pressure versus deflection. On
the basis of linear elastic small-deflection plate thenry (Figure 14 of the
present paper and pp. 162-165 of Reference 3), the following equation can
be derived for the line DE of which AB is a part:

ma2

n

3
= -v2) B2 --£
6 12(1-v%) ¢ ) an,(0) D %9

max (36)

vwhere n4(0) is the value of n, from Figuie¢ 14 for K=0, and ng is the fol-

4
lowing functions of b/a:

ng = 4 z sin(mn/2) [1-sech (E‘é'l %)] (37)
3 m=1,3,5.. m3

The first term on the right side of Equation (36) is the central deflection
of a simply supported plate under a pressure p, and the second term is the
diminution of that deflection due to the fully plastic restraining moment

LR along the boundary. Making use of Equation (1) we may rewrite Equation

(36) as

. 12(3-v?)a?
Et3

6

nax fpa’n, (0) - m n (38)
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and we note that for v=0.3, 12(1-v?) equals 10.92. To further facilitate

the use of Equation (38), graphs of n4(0) and n, are given in Figures 17

9
and 18, respectively.
On the basis of the above discussion, we can now give the following

rule for estimating the central deflection Gmax of a ductile-material lid:

For p < is the larger of 6m

Pultimate’ émax ax

é , where § is the deflection computed

max, max,

from Equation (33) or (34) and émax is the de- (39)
flection computed from Equation (38). For

P>P § x is arbitrarily large.

ultimate® “ma

VII. FLATPACKS IN A CENTRIFUGE

As part of the total screening process, packages are frequently spun

in a centrifuge in such a way that the centrifugal force tends to push
the lid into the cavity. As far as the lid alone is concerned, this
centrifugal force is equivalent to a lateral pressure of Gtd, where
d = specific weight (weight per unit volume) of the
1id material
t = thickness of 1lid
G = centripetal acceleration in units of g (acceleration
of gravity)

If t is in inches and d in 1bs per cubic inch, the formula

peQuivalent = Gtd . (40)

will give the effective pressure in psi due to a centrifuge acceleration
of G g's. Alternatively, given any pressure p, we have from Equation (40)

the following formula for the number of g's of centrifupe acceleration

-51-




equivalent to that pressure:

=2
Gequivalent td (41

As an example of the use of this formula, let us consider a 1lid of .030 in.
thickness and .302 1b/in.3 specific weight and ask how many g's of centri-
fuge acceleration ave equivalent to a lateral pressurc of 30 psi. From

Equation (41) we obtain the following answer:

30

Gequivalent = (.030)(.302) 3310 (g's) (42)

By virtue of the equivalence relation (40), all the formulas and
graphs of the preceding sections can be made to apply to a package in a
centrifuge simply by replacing the symbol p everywhere by Gtd. In this
way, for example, the following formula is obtained from Equation (35)
for the central deflection of a linearly elastic lid of a package in a

centrifuge:

- Gtd a3
Cpax = 10.92 5 (t) an, ng (43)

where ng is to be obtained from the graphs of Figure 15 with the abscissa
labels therein changed to Gtda“/Et". Similarly, Equation (12) gives the

following formula for the maximum tensile stress in the seal when Gtd <Pyt

a.2 ay
S ax Gtd (;) n (44)

It should be noted that the interaction among the base, the walls,
and the 1id is slightly different for a package in a centrifuge than for
the same package under hydrostatic pressure, Reference 2 discusses a

refinement in the a computation to take this difference into account.
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However, this refinement is omitted here, because the improvement will

usually not be sufficient to justify the labor involved.
VI1I. NUMFRICAL EXAMPLES

Here we pose and solve a number of problems in order to demonstrate
how the formulas and graphs of the preceding sections can be used.

Example 1.- A wide-seal uniform-wall constant-thickness-1id Kovar
package of the type shown in Figure 1 has the following dimensicns (in

inches);
a=b=.92 t=te=.015 h=.125 w=.040
and the following material properties:

E = E = 20x10% psi v=v =.3 o =50 ksi o, = 107 ksi
\J w y b

We wish to find the maximum tensile stress Smax in the seal and the central

deflection émax of the 1id due to an external screening pressuve p of 30 psij

also the pressure p required to collapse the 1lid.

ultimate
We first determine all the constants that will be needed to solve this
problem. In accordance with Equation (5a) we take « to be 2, after which

Equation (6b) and Figure 5 give

k=2 3% (=042 % =113 tan K = 1.56
= 1’[2 .015) = arcta .

(The closcness of arctan K to w/2 indicates that in effect the walls are
clamping the cdges of the 1id.) Entering Figures 7, 8, 13, 14, 17 and 18

with b/a = 1 and arctan K = 1,56, we obtain

~53-
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n, = .051 n, = ,443 ng = 10.7 = .00125

1 2 8 A
n4(0) = ,00406 ng = .0737
Also, for p = 30 psi, we have

Y 4
pa’ =._;¥L.<;22_) = 21.1
Et"  20x10%\.015

Since the wall cross-sectional area (wh) is only around one-third of the
1id cross-sectional area (ta) and arctan K is very close to n/2, we shall

use part (c) of Figure 15 to find

nS = ,981

Equation (13a) gives
_ .04 04,2 _
n = 6(.051) + 2(.443)(.92) - (.92) = .343
Finally, from Equation (2),
m=m = (107,000) (.015)2/6 = 4.0125 in.~1b/in.

whence (Eq. (15))

e 4.0125

a2 ) (.051)(.92)2

pt = = 93 pSi

m

and the right sides of Equations (35) and (38) are, respectively,

3
30__, (=92

§ = 10.92 ( 015) (.92)(.00125)(.981) = .0043 in.

maxy 20x108

54~




(10.92) (.92)?

= [30(.92)2(.00406) ~ (4.0125)(.0737)]
maXy  (20x106) (.015)3

.1369 [.1031 - .2957] = -.026 in.

We now have all the constants needed to determine the quantities we
are looking for. We start with Smax' Since Kovar is ductile and the
screening pressure p(= 30 psi) is less than the transition pressure

pt (= 93 psi), the upper left hand box of Table 1 applies. It gives

s = 306227 (.343) = 5443 psi
max .04 : 2P

as the maximum tensile stress in the seal. This is a safe stress if the

solder is one of the higher strength types, such as a gold-tin alloy, and

probably still safe, but with less margin, if the solder is a lead-tin alloy.

To determine the central deflection of the 1id we make use of rule

(39) which states that & is the larger of § and § . Thus
max max, max,

=6 = ,0043 in.
max max,

This is 29% of the 1id thickness but only 3% of the cavity depth. The fact
that amax governed indicates that the 1lid is still in the linearly elastic
reglon OA of the simplified pressure-deflection curve of Figure 16.

The collapse pressure is given by Equation (31) as

2(4.0125 + 4.0125)
(.92)?

= (10.7)

Pultimate = 203 psi
which is well above the screening pressurc of 30 psi.
Example 2.~ Suppose that 30 psi is considered a satisfactory screening

pressurc for the package of ¥Fxample 1 (to be referred te as package I).




What screening pressure would be appropriate for a sccond package (package

11) identical in all respects to package I except for the dimension b, which
has been increased to 1.92 in.?

For package II we still have arctan K = 1.56, but

b .92 a

-~ = = = = .48

a .92 2.1 b
Figures 7 and 8 now give

n, = .083 n, = .513

1 2
and from Equation (13a) we obtain the following value of n for package II1:

04,2
“gy) = .54l

n = 6(.083) + 2(.513) (“22) - (
Then, from Equation (16),

_ (4.0125)(.541) _
t (.083) (.040)?

S
max

16,346 psi

In accordance with the discussion preceding Equation (25), a suitable
screening pressure for package II is one that will produce the same Smax

in its seal as 30 psi produced in the seal of package 1, namely 5443 psi.

Thus, in the formulas of Table 2 we may take S to be 5443 psi. Since
accept

this is smaller than smax , the leftmost formula of Table 2 applies. It
t .
gives the following appropriate screening pressure for package II:

5443 = 19 psi
.92,°
(TBZ) (.541)
Example 3.- Let us repeat Example 1, assuming now that the seal is a

solderless electrically welded seal of the narrow type (Figuve 3(b) with




w = ,010 in., and that the cdge of the 1id is thiuned to a thickuess of

t = .,004 in. while the main thickness t remains .015 in.

The calculations of Example 1 up to, but not including, the evaluation
of n are valid herc. Since the seal is now of the narrow type, Equation (13b)
must be used for determining n. With wo = .010 in., we have e = .035 in.,

and Equation (13b) then gives

B 1 ,.04)7 (.04)°
n = [.05) -5 (5 Vv 535y Cotoy ~ -2%°

Furthermore, while the fully plastic bending strength m in the main part of

the 1id remains 4.0125 in.-1b/in., in the thinned edge it gocs down to

m, = (107,000) (.004)2/6 = 0.2853 in.-1b/in.

according to Equations (2), whence

m
P, - e _ 0.2853 = 6.6 psi
nla2 (.051)(.92)2
The right side of Equation (33) remains at the value Smax = .0043 in., but

1
the new m, value changes the right side of Equation (38), so that now

2
. (10.92)(.92) [30(.92)2(.00406)~(.2853)(.0737)] = .0112 in.
2 (20x10%)(.015)3 *

é
max

Proceeding as in Example 1, we note that the screening pressure

p (= 3C psi) is now greater than P, (= 6.6 psi) and that the seal is now a

it

narrow one. Therefore the bottom right box of Table 1 applies, giving

- 2853 . _ 1 .04,2, _ ‘ R
Spax = (01 (.035) '~ 3051y Cop) | = 800 psi R
~57-




as the maximum seal stress produced in the course of applying p. Since the
scal material fo this ecase Is Kovar with an ultimate teasile strength of at
least 75,000 psi (Sce Section 5 of Appendix A), the 800 psi maximum seal
stress can be considered harmless to the integrity of the scal. From the
absence of p in the formula for § , It can also be concluded that S
max ma

would be the same for all screening pressures greater than the (ransition
pressure Py = 6.6 psi. The offect of using screening pressures greater than
6.6 psi is siwply to spread the length of seal periphery over which the Smax

of 800 psi is developed. i

Turning to the deflections and again using rule (39), we obtain ]

I = .0112 in.

This is 2.6 times larger than the émax produced by the same screening pres-
sure in the lid of Example 1, but still only a small percentage (9%) of the
total cavity depth.

Finally, from Equation (31) we estimate the collapse pressure to be

2(.2853 + 4.0125)
(.92)7?

= (10.7) = 109 psi

pultimate

which is approximately half that of the 1id of Example 1.

The present example serves to show that a thinned edge and 1id plas-
ticity can combine to provide a barrier against severe stressing of the seal
under external pressure, but at the same time tend to increase the lid
central deflection and reduce the 1id collapsing pressure.

Example 4.- Assume that the package of Example 1 has its base changed
from Kovar to ceramic with a thickness of .025 in., a modulus of elas-
ticity of 50%106 psi, and a flexural strength of 65 ksi, What external

pressure p will cause the base to crack?

ultimate




We shall imapgine the package turned upside down, so that the base

becomes Iin effect a 1id with

t = .025 in. E = 50x10% psi o, = 65 ksi

and, 1in accordance with the discussion in Section IV A, we shall make two

estimates of p , one based on Equation (28), the other on Equation

ultimate

(30), and select the smaller of the two.

We start with Equation (28), which gives

[ U,

n. = 85x103/.92 12
7 50x106 .025)

= 1,76

as the values of n7 required to cause fracture. The extensional stiff-

ness Eat of the ceramic base is much higher than the corresponding stiff-

ness Ewhw of the wall. Therefore parts (a) and (c) of Figure 12 are the

ones that apply. Assuming that the walls essentially clamp the edges of i
the base* (as they do the 1id), we narrow the choice further to part (c)

alone. It gives the following as the value of pa“/Et“ needed to achieve

an n, of 1.76 with a b/a of 1.0: . «
222 = 5.6
Et"

whence the pressure required to crack the base is

y 6 "
- 5.6 Bt _ (5.6)(50x10%)C.029)" _ y55 s '\

p
ultimatel au (-gz)h ) \

Proceeding now on the basis of Equation (30), we first compute (Eq. (8b))

*
This assumption will be justified prescntly when arctan K is com-
puted and found to be quite close to u/2.
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.. 4 .92 50 ,.040,7 _ L
K = =7 175 90 (.015) 2 =061 arctan K =1.554
Then from Figure 7,n1 = .05. Therefore Equation (30) gives
_ 65,000 ,.025.2
Puleimate, ~ 6(.05) (92 ) 7 160 psi

as the second estimate. This is slightly higher than the previous estimate

and is therefore not the governing one. We are left with

= 153 psi

- pu]timntel

Pultimate
as the best estimate of the pressure required to fracture the ceramic base.
Example 5.~ Suppose the package of Example 4 to be placed in a
centrifuge in such a way that the centrifugal force tends to push the
ceramic base into the cavity. Taking the specific gravity of the ceramic
to be 3.85, determine how many g's of centrifuge acceleration are required

to crack the base.

We first convert the specific gravity of 3.85 to a specific weight,

d, by multiplying it by the specific weight of water, which is .0361 1bs/in3.

The result is

d = .139 1bs/in?

The pressure required to crack the base is 153 psi, from Example 4. The

equivalence relation (41) therefore gives

. 2
G = _._,.,_.1.5.3__‘!_}15”_3, e = 44,000 g's
(.025 in.)(.139 1b/ind)

a0

——



of centrifuge acceleration required to crack the base.

Example 6.~ A stepped-wall wide-seal package with

Kovar 1id has the following dimensions (in inches):

a = .365 b = .670 t =
h = .082 h1 = ,060 h2 =
w = ,040 wl = .049 v, =

and the following mechanical properties:

]
521
#
co

[ .
v 20x10° psi (Kovar) El 2

[}
ft
|}
L]

v=v =0.3 v, = v, = 0.

w 1

o = 107,000 psi for the Kovar 1lid

a constant-thickness

t = .025
e
.025

.071

.6x10°% psi (glass)

2

Determine the maximum tensile stress Smax produced in the seal by a

screening pressure p of 100 psi.

From Equations (1) and (3b) we have

_ (20x108) (,025) 3

D 12(.9D) = 28.6 in:1b
_ €20x108) (.040)3 _ -
L FTECH 117.5 inzlb
_ (8.6x106)(.049)3 _ _
D, = 12096} 87.9 in-1b
L £8.6x108) (.071)3 _ _
D, 120.96 267 inslb
-61~
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Then Equation (5b) gives

2
e 2 2 2 2
h1 Dw hl h2 - Dw h2
L-\y/ *5 (\%/ \%/J 5 \n
1 2
2
i .060 2 | 117.5 [ 0602 (.025 ?]+ 117.5 ( .0251?
1-(582) * 7.9 .082 082 267 \.082
= 1.82

whence (Equation (6a) and Figure 5)

4 .365 117.5

= 4 2292 = . and arctan K = 1.48
K 72 - 082 28.6 (1.82) 11.1
From the given dimensions we have

a . 365 b

57670 .545 2 1.83

Entering these values, together with arctan K = 1.48, into Figures 7 and 8,

we find

n, = .074 = .515

"y

From Equation (2), m = m = (107,000) (.025)2/6 = 11.146 psi, whence

e? _ 11.146  _ 1131 psi

n,a’ .074)(.365)2

Since this is grecater than the screening pressure of 100 psi, the upper

Py =

left hand box of Table 1 applies, giving
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- .040 040,22 _
n 6(.074) + 2('515)(.365 - 355 = 545
and
s = (100)(2283)"(.545) = 4540 psi
max .040 : ps
Example 7.~ Let us assume that a Kovar case has a ceramic substrate

bonded to its base over virtually the entire extent of the base, creating,
in effect, a two-component plate like that of Figure 1 of Appendix B. We

shall consider the upper component to be Kovar with the properties

\

tm
n

20 x 106 psi vy = 0.3

t, = 0.015 in o, = 107,000 psi

1 b

The lower component will be the ceramic with the following assumed properties:

E2 = 50 x 106 psi v 0.22

t, = 0.025 in. b

Q
1

65,000 psi

Assuming clamped eédges and a square base of internal dimensions
a=b>b = 0.875 in., and using the procedures described in Section V, let us
calculate the maximum tensile stress produced in the ceramic by an external
pressure of p = 50 psi and judge whether or not it is likely to crack under
that pressure.

Visualizing the curvatures produced in the base by the external pres-

sure, we can expect that there will be two candidates for the maximum tensile

stress in the ceramic, They are the extreme-fiber stress O at the N
22 '
center of the base and the stress o,  near the interface at the middle of '
21
J
t
-63-




the edges x = 0 and a. (Inasmuch as the base 1s square and clamped all

around, © at the center and o at the middle of the edges y = 0 and
Y22 Y21

b would be equally good candidates.) The calculations leading to these

stresses must start with Equations (1) through (7) of Appendix B, from

which we find that

(20 x10%) (.015)>

D, = - 6.1813
1 1211 - (. 3) %]
6 3
p, = P0x10009)" _ ¢g 455
12[1 - (.22) %)
= (20 x10%)(.015) (50 x 10%) (.025) 6
S = 2 L = 0.24194 x 10
(20 x10%) (.015) + (50 x10%) (. 125)
6 6
S _ -3(50 x10%) (L025) +.22(20 x10%) (.015) _ ; ,as
(50 x10%) (.025) + (20 x10%) (.015)
(.015 +.025)%  .24194 x10°
p, = L2 % .2 > = 105.332

1-(.285)
D = 6.1813 + 68.4155 + 105.332 = 179.929
D' = (.30)(6.1813)+(.22)(68.4155) +(.285)(105.332) = 46.925

v = 46.925/179.929 = .261

We turn now to the calculation of cx at the center of the base. For
22 )
a square plate (b/a = 1), Table 1 of Appendix B gives the central bending

moments
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1f v = 0.3. Inasmuch as v was found to be actually 0.261, we will calculate
corrected values Mx' and My' of these bending moments. We may use Equa-

tion (20) of Appendix B for that purpose, since Mx = My. It gives

M=M= 1260 hoqy 022y o 0224 pa’

X y 1.3

which, we note in passing, is only 3% different from the uncorrected value

of .0231 paz. Substituting p = 50 psi and a = .875 in., we obtuin

Mx' = My' = .0224(50)(.875)2 = .8575 in.~-1b/in.

for the bending moment intensities at the center of the base(Equations (18)
of Appendix B are the stress equations that may be used when the bending

moments Mx and My are equal. From the last equation in that group we find

that
s o = 8575 | (.26194 x10%)(.060) , (50 x10%)(.025)
X9p Y99 (179.929) (1 +.261) 2(.025) (1 -~ .285) 2(1-~.22)
= 4050 psi
] For the other candidate maximum stress, namely ole at the middle of

the edge x = 0, we start with the following data from Appendix B, Table 1,

for v = 0.3:

M_ = -.0513 pa® M = -.0154 pa’
x y

To correct for the fact that v = .0261, not 0.3, we must now use Equa-

tions (19), inasmuch as Mx and My are not equal. They give
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M ' o= ([1-.3(.261)] (- .0513) + (.261 - .3)(- .0154)} paZ

b3 .91
= - ,0513 pa2
M= L {11~ .30.261) 1 (- .0156) + (.261-.3) (- .0513)} pa’
= - .0134 pa2
whence
M_' = - .0513(50)(.875)% = - 1.9638 in.~Ib/1n.
M- - .0134(50)(.875)% = - 0.513 in.-1b/in.

Substituting these values for Mx and My, respectively, in the third of

Equations (17) of Appendix B, along with

1-vv=1- (.261)(.285) = .9256
1- v, =1-(.261)(.22) = .9426
V-v=.285~- .261 = .024

v, - v = ,22 - .261 = - ,041

1-v2=1- (261)% = .9319
1-v2 =1- (2852 = .9188

1-v.2=1-(22)% = .9516

2

we obtain




o £.24194 x106)(.04) . (-1.9638)(.9256) + (- .513)(.024)

21 2(.025) (179.929)(.9319)(.9188)

(50 x10%)(.025) (- 1.9638)(.9426) + (- .513)(-.041)
2 ’ (179.929)(.9319) (.9516)

- 2299 + 7168

4869 psi

Thus, the two candidate maximum tensions in the ceramic are 4050 psi
and 4869 psi, and the governing one is the latter. It is well below the
given breaking stress of 65,000 psi for that ceramic. We therefore tenta-

tively conclude that there is no danger of the ceramic substrate cracking

under the given external pressure of 50 psi.

Before accepting this conclusion as final, let us compute the center
deflection of the base due to the 50 psi external pressure, in order to
satisfy ourselves that the small-deflection assumption, on which all of the
above calculations are based, is valid. From Table 1 of Appendix B we have,
for b/a = 1, |

4

4
5 = .00126 2%_ . (.00126)(50)(.875) " _ 00021 in.

179.929 ;

and this is indeed very small compared to a, b and t.

A vord of caution may be in order at this point: A ceramic substrate
bonded to a package base would not ordinarily extend all the way to the
walls of the package. Instead there Qould generally be a small gap between
the periphery of the substrate and the package walls; This means that
those edge bending moments in the base that are transmitted from the base to

the wall must be borne by the Kovar alone, rather than by the Kovar-ceramic
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composite, and there i1s therefore a possibility that the edge bending moments
developed by a given pressure might exceed the fully plastic bending strength
m, of the Kovar, This would result in plastic hinges developing along
portions of the edges of the base, which would invalidate the assumption of
clamping.

In the present example, this possibility does nnt pose a serious problem:

For the given modulus of rupture of oy = 107,000 psi for the Kovar, we obtain
o, t 2 2 !
b1 (107,000) (.015) in.-1b
m = = = 4,01 —/———
e 6 6 in.

as the fully plastic bending strength of the Kovar edge of the base, and

this is much larger than the calculated actual edge bendlng moment of

1.9638 in.-1b/in. Therefore the edges of the base can still be considered
to be clamped under the 50 psi external pressure, thus validating the cal-
culation procedure that has been used. In fact, by scaling, we may conclude

that the calculation procedure would be valid for pressures up to

4,01

p=m x 50 = 102 psi

This is the pressure at which plastic hinges will first start to form in.the
Kovar at the midpoints of the sides of the base, if there is a gap between
the periphery of the ceramlc substrate and the walls of the package.

If the pressure is increased beyond 102 psi, the plastic hinges will

gradually lengthen, and the base will depart more and more from the condition

of a clamped plate. There will be no further increase in the values of Mx




and M at the middle of the edges x = 0 and a, inasmuch as Mx fs at its
maximum value of m, and My ét its maximum value of vm_, but the bending
moments at the center of the base will continue to increcase.

There seems to be no easy way to estimate ceramic stresses once the
Kovar plastic hinges have started to form in the gap between the edge of
the substrate and the walls. However, a rather rough but conservative
approach to this problem can be suggested: Assume that the base behaves

as a simply supported plate with regard to any increments of pressure

beyond the pressure Py at which plastic hingeing initlated (i.e., beyond
102 psi in the present example); therefore for any pressure p > P,

find the stresses in the ceramic by superimposing the stresses at p = Py
in the clamped plate and the stresses due to a pressure of p - Py in the

simply supported plate. The latter stresses can be obtained using Table

of Appendix B, instead of Table 1. (They will, of course, be zero at the
edges.) In adapting this approach to non-square plates, Table 3 will be

more appropriate than Table 2 if plastic hinges have not yet formed along

the short edges.

IX. EXPERIMENTAL CONFIRMATION AND INFERRED GLASS STRENGTH

According to Equation (22) the following relationship should exist
between the pressure Per causing loss of hermeticity under a ductile 1lid

and the ultimate tensile strength Su of the seal material, as long as

1c

Per € Py!
2 -1

Pep ™ Sype [ 0l (45)

-69-




Thus, given a family of different packages all having the same seal material

and the same quality seals, the graph of P, versus [(a/w)zn]-1 should
theoretically be a straight line through the origin (admitting only
pcr's that are less than pt). In Reference 2 experimental data are
presented which tend to confirm this theoretical conclusion.

The data were furnished by a package manufacturer. They involved 579
packages distributed among eighteen groups, with the packages nominally
identical within each group. The packages had three-segment stepped-type
walls, as in Figure 2(b). The top segment was a Kovar seal frame; the two
lower segments were glass beads sandwiching a lead frame. The lids were
Kovar and wvere sealed to the wall by means of a gold-tin sclder preform.

Each group of packages was placed in a pressure bomb and subjected
to external air pressure that was increased in increments of 5 psi or

10 psi. Each new pressure was held for approximately 10 minutes, after

which the packages were tested for gross leaks by submerging them in a
heated liquid and watching for bubbles emanating from the interior of the
package. Consistently the bubbles were seen to emerge from under the
1ids in the middle of a longer side. The leakers were removed from the
group and the rest of the group was then subjected to the next higher
pressure. This process was continued until all the packages had been

made to leak.
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Thus, for each package an experimental value of P., Was obtained,
From the dimensions and elastic constants of the package components a
value of the package parameter [(a/w)zn]'_1 was also computed for each
package group, so that for each package group the mean - of the group
could be plotted against the package parameter. The plotted points fell
reasonably close to a straight line through the origin, thus tending to

confirm the validity of Equations (45) and (22).

From the slope of this straight line, the average tensile strength
sult of the seal materfal could be inferred (see Eq. (45)) and was found
to be 8450 psi. 1Inasmuch as the gold-tin solder between the 1lid and seal
frame was undoubtedly stronger than the glass underneath the seal frame,
this value of 8450 psi can be taken as an estimate of the mean tensile
strength of the glass in the walls of these packages.

Using Equation (45) an inferred Sult was computed for each of the
579 packages individually. The lowest inferred glass strength was
3400 psi, occurring in only one package. Only 14 packages (2.4%) had
inferred glass strengths below 5000 psi. The highest inferred glass
strength was 18,000 psi. These inferred strength values and their vari-

ability are consistent with the discussion of glass tensile strengths

in Section 4 of Appendix A.




The cumulative distribution of inferred glass strengths for the

individual packages is given in the following table:

Percentage of packages

S, psi having inferred Sult < S
2,700 0
3,400 17
4,000 .17
4,500 .62
5,000 2.4
5,500 6.7
6,000 12.8
7,000 26.8
8,000 47.1
9,000 62.5
10,000 9.1
11,000 89.7
12,000 95.1
13,000 96.4
14,000 96.9 {
15,000 97.6 j
16,000 98.3 ?
17,000 99.4
18,000 100
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X. REMARKS

In this chapter formulas have becen presented, related to the mechani-
cal behavior of microelectronic flatpacks under external pressure, that
can assist in the design of such packages or in the selection of suitable
screening pressures for testing their hermeticity.

The specific items covered by the formulas are: maximum tensile
stress in the lid-to-wall seal (or seal-frame-to-glass-wall seal),
central deflection of the 1id, pressure required to crack or collapse the
11d or the base, and the equivalence of external pressure and centrifuge
acceleration insofar as lid behavior and seal stresses are concerned.

Numerical examples have been presented to illustrate)the use of the
formulas, and experimental data have been referred to which tend to confirm
some of the formulas and hypotheses related to loss of hermeticity under

extemal pressure.




Chapter 2 - CONSTANT ACCELERATION

Constant acceleration in a centrifuge is one of the standard tests
to which microcircuit packages may be subjected (e.g., see Method 2001.2
of Reference 1), Microelectronic devices in rocket~launched equipment may
also experivnce periods of constant or nearly constant acceleration during
the launch.

Depending on the orientation of the package in relation to the inertia
loading (the centrifugal force, in the case of the centrifuge), this
environment can produce stresses and deflections in the 1id or base, ten-
sions in the internal wires and their bonds, flexure and torsion of the
internal wires, and tension or shear in the chip-to-substrate and substrate-
to-package attachments. In this chapter, which is based for the most part
on Reference 7, the magnitudes of these effects are assessed, especially
with a view toward evaluating the effectiveness of the centrifuge as a
stressing device for screening purposes.

In that part of the study related to the tensile stressing of internal
wires and bonds, the extensibility of the wire is taken into account; this
is a factor that is usually negligible but that can be important for wires
with small initial loop height. The wire stressing capability of the pull
test is also evaluated (again with wire extensibility taken into account),
in order to provide a standard against which the effectiveness of the

centrifuge can be measured.
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I. WIRE AND WIRE BOND TENSIONS

In this section we assume the package so oriented in the centrifuge
that the centrifugal force tends to pull the wire away from the base,
creating a stress condition in the wire that is primarily temsile. In
Section IV we will assume a different orientation, one in which the
centrifugal force acts parallel to the base of the package and narmal to
the plane of the wire loop, so that the primary mode of stressing in the

wire is flexure, with a very small amount of torsion.

A. Nomenclature and Physical Constants.- We consider a wire (Figure 1)

that spans a horizontal distance S and, 1n its unstressed state,has a .

length of Lo and a cross-sectional area of A. Its Young's modulus and
unstressed specific weight will be denoted by E and v, respectively, and

the assumed values of these constants for two common wire materials are

tabulated below (Table 1).

Table 1.- Properties of Gold and Aluminum

Gold Aluminum
E (psi) 12 x 108 10 x 106
Yy (1b/in.3) .7 1

A parameter that will be needed later is the "excess-length parameter"

R, defined as follows:

R = -2 or 2 -14+R (1)
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fa) CATENARY (b) BILINEAR

Figure l.~ Unstressed wire in a catenary or btlinear shape.

T
Clii

- _A,,Aﬂ.,l...‘,, _. r.
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i —:——.‘.—.-—;.-LA-;. oo f et

i i il D Rt

—— -

Figure 2.- Graphs relating excess-length parameter R and dimensionless loop-
height paramcter H/S.

(e) Cenreirve TeSY (b) pPuLL TEST

Figure 3.- Virc as stressed in a centrifuge or pull test. (Dashed lince
represent unstressed vire,)
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In principle, R can be determinced by measuring Lo and S and substituting
their values in Eq. (1). Howecver, Lo may be rather difficult to measure.
Much easier to estimate is the loop height H when the unstressed wire is

in the curved (assumed to be catenary) shape of Figure 1(a) or is gently pulled
into the bilinear shape of Figure 1(b) (the two values of H for a piven

wire will of course be differcnt). Therefore, graphs are provided in Figure 2
from which R can be determined if the dimensionless loop-height parameter
H/S 1s known for either of these two shapes. The curves in Figure 2 can

be accurately approximated by the following equations if H/S is less than

0.2:

-
[

-g—-(H/S)2 (lower curve) (2)

2(H/S)?2  (upper curve) (3)

-]
]

It will be noted that R 1is usually of a much smaller order of magnitude
than H/S.

Under its distributed inertia loading in a centrifuge or its concen-
trated loading in a pull test, the wire will develop a stressed length of L
and will exert forces of magnitude To on its bonds (Figure 3). The corres-

ponding maximum nominal tension stress in the wire will be
o =T /A (4)

occurring at the ends.

The magnitude of the inertia loading in a centrifuge test will be char-
acterlzed by the parameter G, defined as the number of g's (g = acceleration

of gravity) of centripetal acceleration that the wirec is expericncing. The
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intensity of the loading in a pull test will be described by the magnitude

P of the pulling force shown in Figure 3(b). Both loads are assumed to be

so oriented as to maintain the wire in a symmetrical shape.

B. Wire Stress in a Centrifupe Test.- The stress analysis of a wire in

a centrifuge test, taking extensibility into account on the basis of Hooke's
Law, and assuming negligible bending stiffness, is carried our in Reference 7.
The results are summarized in Figure 4, where the dimensionless wire-stress
parameter TO/AE is plotted as a function of the dimensionless inerti;—

loading parameter GyS/E for different values of the excess-length paraweter

R. For any given test one would know the value of the abscissa. For that
abscissa the ordinate value of TOIAE would be read from the appropriate R

curve. Multiplication of the TO/AE value by the known value of AE or E

would give the bond force TO or the maximum wire stress TO/A.

To facilitate the use of Figure 4, two "bench-mark" values of the
abscissa,corresponding to certain test conditions, are indicated by arrows.
Since the abscissa is directly proportional to G and S, it is easy to
compute its value in any test of a gold or aluminum wire by multiplying one
of the bench-mark values by appropriate ratios.

A bench-mark ordinate is also marked on Figure 4 which indicates that
TO/AE = ,001 corresponds to a maximum tensile stress of 10,000 psi in

aluminum wire and 12,000 psi in gold wire. The gold and aluminum wire }

stresses associated with any other TO/AE value, say (TO/AE)l‘ can be

found by multiplying the above stresses by the ratio of (TO/AE)1 to .001.
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In order to judge whether or not a certain wire stress, o= To/A, is
significant, one could compare it with the ultimate tensile strength % of
the material. This varies greatly with the manufacturer and the temper of
the wire. Typical values are given in Table 2 below for small diameter wires
(1.5 mils and less). Manufacturers' guaranteed values may be lower than the

ones in the table.

Table 2.~ Typical Values of %y (psi) for Wire

Gold Aluminum
A“;ealed 25,000 37,000
emper
“a;d , 60,000 60,000
emper

Whether or not wire extensibility has a significant effect on the stresses
can be judged from the slopes of the curves in Figure 4. A slope that is
45° or nearly so indicates that wire extensibility has a negligible effect.
Where the curves have such a slope, TO/AE is proportional to GyS/E; then
To and To/A are actually independent of E. Where the slope is significantly
d;fferent from 45°, wire extensibility has a sign¥ficant effect; this happens
for the smaller values of R when GYyS/E is sufficiently high.

Figure 4 is based on the assumption that the wire material obeys Hooke's
law. Therefore, strictly speaking, any data obtained from that figure are
valid only if the maximum stress, 0 = To/A’ is below the proportional-limit
stress cp associated with the point P of the stresé-strain curve where
stress stops being proportional to strain (sce Figure 5). If the stress
o= To/A falls abcve point P, say at Q, the curves of Figure 4 will still

~

be approximately correct provided that E 1in the ordinate and abscissa
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Figure 5.~ Tensile stress-strain curve for a ductile material.
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Figure 6.- Actual and idcalized stress-strain curves for hard-temper wire.
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labels 1s changed to ES, where ES is the secant modulus associated with
the stress o = To/A (sece Figure 35). The approximation becomes

better as H/S becomes smaller, for then the stress is more nearly constant at
the value o along the entire length of the wire. Since Es is itself a

function of o, it is clear that trial-and error calculation will be required

to determine ¢ when o > op.
For hard-tempered wires it may be permissible to idealize the actual

(curving) stress-strain curve to a bilinear form, as in Figure 6. Then

Figure 4 would be valid without modification for all o's up to Gu

C. Wire Stress in a Pull Test.- The pull test of Figure 3(b) is

analyzed in Reference 7and the results are given in Figure 7 by graphs that
are similar to those in Figure 4. The dimensionless loading parameter in
this case is P/AE, and three "bench-mark' values of this parameter are indi-
cated, corresponding to minimum pre-seal pull strengths specified for test

condition D in Table 1 of Method 2011.2 of Reference 1.

As indicated in Figure 7, R = .155 represents a dividing line. For
wires with less excess length (which is the usual case) the bond force '1‘0
will be greater than the pull force P, while for wires with more excess
length the opposite will be true.

As in the case of Figure 4, the more the slope of a curve deviates
from 45°, the more significant is the effect of wire extensibility. Also
as in Figure 4, the curves of Figure 7 can be used for ¢ = TO/A > op
provided that the Young's modulus E is replaced by the secant modulus Es

associated with the stress o. In fact, this procedure is more accurate
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in the prescnt case, because the wire stress {s constant along the entire

length of the wire in the pull test, whercas it is only approximately so in

the centrifuge test.

D. Comparison of Centrifuge and Pull Test.- A comparison of Figures 4

and 7 shows that the centrifuge is generally much less effective than the
pull test in stressing wires and wire bonds. For example, let us consider
the three bench-mark pull tests of Figure 7, which, as already noted, repre-
sent minimum required pre-seal pull strengths specified in MIL-STD-883B,
Supposing R to be .03, which is a reasonable value, we find that all of
those pull tests produce tensile stresses exceeding 10,000 psi in aluminum
wires or 12,000 psi in gold wires (TO/AE = .001). On the other hand, for
the same R the three bench-mark centrifuge tests of Figure 4 produce
TO/AE values of .0001 and .00026, implying wire stresses that are at mest
10% and 26% of those produced by the pull tests.

In order to achieve a stress of 10,000 psi in an aluminum wire with
R = .03 at 40,000 g's, Figure 4 shows that the span would have to be one
inch. To achieve 12,000 psi at 30,000 g's in a gold wire the span would
have to be four-tenths of an inch. Since such large spans are unlikely to
occur in practice in microelectronic devices, and since centrifuge accelera-
tions exceeding 30,000 or 40,000 g's are difficult to achieve and may be
destructive of other package components, it appears that the centrifuge will
generally be incapable of producing wire stresses comparable to those pro-
duced in the MIL-STD-883B pull tests. A similar conclusion was reached by
other investigators (see, for example, Reference 8).

A more thorough comparison of the centrifuge and pull tests can be made
by comparing the GyS/E value from Figure 4 and the P/AE value from

Figure 7 for many selccted combinations of R and TO/AE. Each such compari-
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son will give us a pair of tests (one centrifuge, the other pull) that are
equivalent in the sense that they will produce the same stress in a wire
with the given value of R. Such comparisons show that the ratio r of the
equivalent load parameters, that is,

P/AE P

GYS/E ~ GySA ~ )

)

i

t
~
-

depends on R but is virtually independent of TO/AE. The results of the
comparisons can therefore be put in the form of a single curve, Figure 8.

Using Eq. (5) in the form
P = rGySA or G = P/rySA (6)

and taking r from Figure 8, one can readily find the P of a pull test
that will stress any wire and its bonds as severely as a given number (G)
of g's in a centrifuge test. Conversely, given the P of a pull test, one
can find how many (G) g's of centrifuge acceleration will be equivalent
in severity to that pull test.

For wires without excessive loop height, R will usually be close
to zero. Then r may be taken as 0.59 with little exror, and the

equivalence relation (6) will become
P = .59GySA or G = P/.59ySA (7)

To fllustrate the use of this result, let us ask what centrifuge acceleratien
is equivalent to a 3-gram pull on a 1-mil diameter gold wire with a 100-mil

span. YFrom the given data we have
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3(.002205) .006615 1b

1

s
L]

y = .7 1b/in.3

S = .100 in.

6

.785 x 107° {n.”

>
[}

I 2
i (.001)
Substitution of this information into the second form of Eq. (7) gives

) .006615 )
G = 550 77(.1) (. 785 x 10-5) - 204,000

Thus, 204,000 g's of centrifuge acceleration would be required to produce
the same wire and bond stresses as the given pull test. This is an

impractically high value.

I1. CHIP AND SUBSTRATE ATTACHMENT STRESSES

A. Conventional Bonding.- The rectangular parallelepiped in Figure 9,

of dimensions a, b and t and specific weight <y, represents a chip

bonded to a substrate, or a substrate bonded to a package base. The two
vectors represent two possible orientations of a centrifugal force that
might tend to cause separation of the object from the thing to which it is

attached. In either case the magnitude of the force is .

Gyabt (8) ;

where G 1is the number of g's of acceleration of the object. The corres- 4
ponding nominal stress in the bond, obtained bv dividing (3) bv the gross

bonding area, ab, 1is f\
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and this is cither a tensile or a shear stress, depending on the oricntation
of the package in the centrifuge. If there is a "voids ratio" V {in the
bond, the net bond area will be (1 - V)ab, and the actual mean stress in

the bond will be

E?
-

(10

Sactual T 1w

On the basis of Eq. (10) we can investigate the likelihood of the
centrifuge producing separation of a poorly bonded substrate. For
this purpose let us set G at 50,000, which is Reference 8's estimate of
the largest number of g's one can conveniently and safely use, and set
at .140 1b/in.? (3.89 grams/cc), which corresponds to one of the denser

substrate ceramics. With this input, Eq. (10) gives the stress versus i
thickness relationship shown in Figure 10. Figure 10 can be used for other i
values of G and Y by simply multiplying the ordinate values by ]

-G __ .Y
50,000 ' 3.89 a1

where Yy is the specific gravity (i.e., the density in grams/ecc). Thus,
for silicon chips (y = 2.4) tested at 50,000 g's, one should multiply the .
ordinates of Figure 10 by 2.4/3.89, or .62.

From Figure 10 we can conclude that 50,000 g's of centrifuge accelera-

tionare not likely to significantly stress a silicon chip attachment, even 1
1f the volds ratio is very large. For example, considering a chip thick-

ness t of 6 mils and a voids ratio V of 90 percent, we obtain a bond

stress of only




t (Has)

Figure 10.- Bond stress for 3.89 grams/cm3 substrate at 50,000 g's. (For
silicon chip of 2.4 grams./cm3 density, multiply ordinates by
.62, Por G g's, multiply ordinates by g/50,000.)
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= (420)(.62) = 260 psi

sactual

Since bond strengths are measured in thousands of psi for most bonding
materials, the developed stress of 260 psi is not likely to cause separation
of this poorly bonded chip.

The situation is slightly better in the case of a ceramic substrate,
because of its greater thickness. For example, a substrate of 50 mils thick-
ness with a voids ratio of 0.9 will develop a bond stress of 3500 psi, and
this might be sufficient to cause separation for some bonding materials. It
should be rememwbered, however, that this result is predicated on the assump-
tion of 50,000 g's of centrifuge acceleration. As discussed in Section III,
such high accelerations may be unusable for the larger size packages because

of their destructive flexural effect on the 1lid or base.

B. Face-Down Bonding.~ If a chip is bonded face down to a few

pedestals or bumps, there is effectively a high voids ratio and there-
fore some hope of creating significant bond stress, despite the small mass
of the chip. When dealing with such chips, the pedestal area is somewhat
uncertain, and it may therefore be more appropriate to study the force B
per bump, rather than the bond stress, per se. Dividing the total inertia

load (8) by the number of bumps, N, we obtain the following formula for B:

To study the implications of this formula, let us consider the following

specific case, based on data in Reference 9:




2.4 grams/cc (silicon)

<
L}

b = 40 mils

»
"

t = 6 mils

-4
[

10 bumps
Then the chip volume is
= 3 - =7 3 =6 3
abt = (.040)(.040)(.006)in.” =96 x 10 ' in.” = 157 x 10 ~ cm

and for a 40,000-g centrifuge acceleration, Eq. (12) will give i

5 - £40,000) (2.4)(157 x 10°°)

10 = 1.5 grams (13) )

as the force per bump. Approximating the contact surfaces as circles and
estimating their diameters to be between .0010 in. and .0018 in., we can

compute from the above result the following possible range of stress in

the bond:
sactual = 4210 psi to 1300 psi (14) |
For such a chip, Method 2011.2 of MIL-STD-883B (Reference 1) speci- 1
fies a required strength of 5 grams per bump. Thus, the 1.5-gram force N

obtained in Eq. (13) can be considered to be at the threshold of signi-

ficance, but not severe enough to be equivalent to the MIL-STD-883B

L

requirement. The sfress values of Eq. (14) are also at the threshold
of significance. One can scale up the results in Eqs. (13) and (14) by

increasing G, but the remarks at the end of the previous section regarding

the danger of high G's are equally pertinent here.
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IITI. LIDS AND BASES OF RECTANGULAR FLATPACKS

As discussed in Chapter 1, an acceleration of G g's normal to the
114 or base of a package {s equivalent to a uniform lateral pressure

p of the following magnitude:

As discussed in Reference 2, an acceleration of G g's normal to
the 1lid or base of a package is equivalent to a uniform lateral pressure

p of the following magnitude:
p = Grt (15)

wvhere t 1s the thickness of the 1id or base and <y 1is the specific
weight of its material*.

The equivalent pressures given by Eq. (15) can indeed be significant,
as the following example will show: Take G = 15,000, vy = .140 lb/in?

(ceramic), and t = .025 in. Then the equivalent pressure is

p = (15,000)(.140) (.025) = 52.5 psi

This is in the range of pressures specified for hermeticity testing in
Method 1014.2 of Reference 1. Such "pressures” can be expected to produce
the following significant mechanical effects, as discussed in Chapter 1:
(a) Flexing of the 1id, leading to bending moments in 1lid-to-
wall seal which tend to aggravate defects in that seal., This

effect is most pronounced in the middle of the longer sides.

t .

Equation (15) assumes the 1id or base to be of a single material. 1In
the case of a two-component base (e.g., a ceramic and Kovar combination),
vt should be replaced by T, the weight per unit area of the base.
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(b) Collapse of a ductile 1lid and cracking of a ceramic lid or
base. The likelihood of these effects increases as the package

size goes up.

Another effect, not discussed in Chapter 1, is the following:

(¢) Flexing of the base, which induces interlaminar shear stress
in the bond between the base and a substrate attached to it,
or between a substrate and a chip attached to it. These shear
stresses, which are analogous to the "VQ/I" shear stresses of
beam theory, can be more significant than the ones induced
directly by the inertia loading and which were discussed in

Section IT.

Thus, it appears that centrifuge acceleration can produce significant
flexural effects on the lids and bases of flat-packs, thus simulating the
flexure produced by lateral pressure, constant acceleration as in a cannon-
launched device, squeezing of the package during novmal handling, or flat-
wise impact due to accidental dropping of the package onto the floor (see

Chavoter 3).

However, although the centrifuge is capable of the above important sirmu~
lations, it is not necessarily to be recommended for that purpose. The same
flexural actions can be produced with less difficulty by placing the package
in a closed vessel which is then pressurized or evacuated. In this way the
troublesome problem of properly supporting the package in the centrifuge is

avoided. At the same time, if external pressure is used, one has accomplished

the first step of a gross leak test for hermeticity. (The follow-up step




would consist of inserting the package into a warmed fluid bath and watching
for bubbles.) One sacrifices only the capability of exerting more than

14.7 psi of outward effective pressure on a 1id or base, capability which
the centrifuge has in principle if the complicated support problem can be

overcome.
IV. WIRE FLEXURE

In Section I the wire stressing effectiveness of the centrifuge was
evaluated for the case in which the centrifugal force tends to pull the
wire away from the base, i.e., to stretch the wire. In the present section
we consider the package so oriented in the centrifuge that the centrifugal
force acts parallel to the base of the package and perpendicular to the
plane of the wire loop. With this orientation, flexure, rather than exten-
sion, is the primary stressing mode, with the maximum bending moments in
the wire occurring at its ends.

The determination of the maximum flexural stress is straightforward if
one assumes the wire to be linearly elastic and to have the shape of a
circular arc, for then the theory in pp. 364 and 365 of Reference 20 is
immediately applicable. For an H/S ratio of .076 it leads to the following
formula for the maximum extreme-fiber cross-sectional bending stress o(psi)

in the wire:
2
o= .7G8"y/d (16)

vhere G is the number of g's of centrifuge acceleration, S is the wire

span (in.), d the wire diameter (in.), and y the specific weight of the
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wire material (1b/1n.3). Although Equation (16) was obtained for an H/S
ratio of .076, it may be used for all H/S ratios from 0 to 0.13 with an
error of less than 5%.

Wires can tolerate a higher stress in flexure than in tension, inas-
much as the flexural stress 1is localized at the extreme fibers. Taking
o = 20,000 psi to be a flexural stress that sound wires should reasonably
be able to withstand (this is about 1/3 the ultimate tensile strength of
gold and aluminum wires in the hard temper), we can use Equation (16) to
calculate combinations of G, S and d leading to that stress. The results
of those calculations are given in Figure 11. From it we see, for example,
that 10,000 g's suffice to produce 20,000 psi flexural stress in gold
wires of .001-in. diameter with spans of .064 in.

On the other hand, 10,000 g's of acceleration applied to aluminum
wires of the same diameter would produce flexural stress exceeding
20,000 psi only in wires of 0.17-in. span or longer.

Equation (16) shows the flexural stress to depend on the square of
the span S, which implies that centrifuge accelerations required to
adequately stress the shorter wires could easily overstress the longer
wires. Therefore the choice of a G~level should be governed by the longegt
wires in the package. In other words, it may be necessary to accept an
understressing of the shorter wires for the sake of not damaging the longer

wires.
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Figure 11.~ Combinations of span S, diameter d, and centrifuge acceleration G
leading to extreme~fiber flexural stress of 20,000 psi in gold
and sluminum wires. (G = number of g's of centrifuge acceleration.
Centrifugal force {s perpendicular to the plane of the wire loop.)
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V. REMARKS

In this chapter we have assessed the capabilities of the centrifugpe as
a stressing device for the following microelectronic components: wires and
wire bonds, chip and substrate attachments, lids and bases of rectangular
flat-packs. The conclusions to be drawn from this study are as follows:
(1) The centrifuge is of marginal utility for the tensile stressing of
wilres and wire bonds, because of the low mass of these components and pos-
sible strength limitations of the package. (2) For the same reasons, the
centrifuge is of marginal (or less) utility for stressing normal chip-to-
substrate attachments. (3) However, the centrifuge might be capable of i
producing significant bond stresses in chips which are bonded to a few

pedestals or bumps, as in face~down bonding. (4) The centrifuge might 4

also be capable of producing significant stresses in substrate-to-package
bonds. (5) The centrifuge can produce significant flexural stresses in
1ids and bases of the larger flat-packs, but these effects can be more easily
produced by hydrostatic pressure. (6) The centrifuge can produce signi-
ficant flexural stressing of gold wires if the centrifugal force acts
parallel to the base and perpendicular to the plane of the wire loop.

The following is a listing of the main quantitative results presented

in this chapter.

(a) Figures 4 and 7, which embody the results of the stress analyses
of a wire in a centrifuge or pull test, taking the extensibility
of the wire into account. (The wire extensibility effect, which
has been ignored in prior anmalyses, is usually not important, but
it can become important 1if the wire has very little or no initial

slack.)
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(v)

(c)

(d)

(e)

()

(g)

Figure 8, which enables one to determine pull tests and centri-
fuge tests that are equivalent Insofar as their stressing of
wires and wire bonds is concerned.

Equation (7), which epitomizes the above equivalence information
into a simple formula that is valid for wires of normal loop
height.

Figure 10, which enables one to estimate centrifuge-induced bond
stresses in chip-to-substrate and substrate-to-package bonds as
a function of the fraction V of voids in the bonding area.
Equation (12), which enables one to estimate the centrifuge-
induced force per pedestal for chips which are bonded face down
to a few pedestals or bumps.

Equation (15), which enables one to determine hydrostatic pres-
sures and centrifuge accelerations that are equivalent insofar
as their flexing of the lids and bases of flatpacks is concerned.
Equation (16), which gives the extreme-fiber flexural stress

for the case in which the centrifugal force acts parallel to

the base and perpendicular to the plane of the wire loop.
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Chapter 3 - FLATWISE IMPACT

In this chapter we consider a horizontal flatpack falling vertically
and impacting upon a horizontal rigid surface, so that its motion is

arrested in an extremely short time, and we investigate some of the

stresses resulting from this rapid deceleration.
In particular, in Section I we consider the package falling with an
upside-down orientation, so that the arrest of the motion will produce
tension in the internal wires and wire leads. In that section we provide
formulas and graphs that can be used to estimate the maximum wire tension
as a function of the impact velocity and the arresting time, thereby
enabling one to judge if the tersions achievable are significant enough
to make the flatwise upside-down drop test a practical screen for the
internal wires in closed packages. The wires are assumed to obey Hooke's
law.
In Section II, theory is provided for estimating the flexural stresses
in the base of the package undergoing the flatwise upside-down drop test.
With the aid of this theory one can tell whether or not the impact velo-
cities high enough to produce significant stressing of the intermal wires
will at the same time be too severe (i.e., damaging) for the package base.
In this section also Hooke's law is assumed to hold. .
In Section III the flexural response of the package 1lid in a right-
side~up drop test is discussed. _
Finally, in Section IV the question of feasibility.of the upside-down 1
flatwise drop test as a mechanical screen for the internal wires in closed

packages is discussed, and a type of apparatus for such a test is described \

which merits investigation.




Although the discussion and results presented in this chapter are
consistently referenced to the drop test, they may apply to other situations
as well. For example, bringing a falling package to rest with constant
deceleration from a pre-impact velocity vo in a stopping time ts is
equivalent to accelerating the same package upward with constant accel-

eration from a state of rest to a velocity Yo in a time ts.

I. WIRE STRESSES

A. Upper Bound Estimate.- The wire and an upside-down falling package

just prior to their impact on a rigid surface are shown in Figure 1. The
wire, BC, 1s assumed to have its ends at the same level and an initial
loop height H that is small compared to the span S. The initial shape of
the wire is represented by the function yo(x) in Figure 2. The wire is
assumed to have negligible bending stiffness.

An uypper-bound estimate of the maximum tension produced in the wire
by the impact can be obtained by assuming that at impact the motion of

the ends of the wire (B and C) is instantaneously arrested and the wire

achieves an extreme deflected shape yl(x) (see Fig. 2) that is completely
devoid of kinetic energy (as in a standing wave vibration). Assuming
conservation of energy, we may equate the strain energy of the configura-
tion yl(x) to the initial kinetic energy of the wire just prior to impact

and thus determine the amount of stretch of the wire in its extreme

deflected ehape. An analysis on this basis has been carried out in

Reference 11. The result, for wires that obey Hooke's law, is
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Figure 1.- Wire (BC) in a package undergoing
upside~down flatwise impact.

— //
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Figure 2.~ Wire configurations (initial and deformed).
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v
= ’ p . _0
Emax vo E c 1

v, VoE = Ev /c (2)

where € is the maximum strain produced in the wire, g is the corres-
max max

ponding maximum tensile stress, v, is the velocity of fall just prior to

the instantaneous arrest of the ends of the wire, p is the density of the

wire material, E is the Young's modulus of the wire material and
c=7v Efp (3

is the speed of sound in the wire. (These results, it will be noted, are
independent of the spans.) The maximum bond force Fmax is obtained by

multiplying O pax by the cross-sectional area A; thus,
F =g A= v YpE A (4)

Equations (2) and (4) predict rather significant wire stresses and
bond forces. For example, the following table gives the o and
max
Fmax computed in Reference 11 for gold and aluminum wires of 1.2 mils

diameter as a result of a 4-foot flatwise drop (vo = 16 ft/sec):

Gold Aluminum
o (kst) 28.3 9.77
max
Fmax (grams) 14.5 5.0

The stresses are a significant fraction of the ultimate tensile
strengths of the wire materials,which are on the order of 60 ksi, and the
bond forces are comparable to or greater than those that would be developed

in the Method 2011.2 MIL-STD-883B pre-cap pull tests (see Figure 7 of Chapter 2).
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B. More Accurate Analyses.~ ‘The assumptions of instantaneous arrest

and subsequent standing wave motion, in the approach of Reference 11 just
described, were considered to be possibly sericus limitations on the
validity of the results obtained; therefore more refined analyses were
undertaken.

The first of these was presented in Reference 12. It retained the
assumption of instantaneous arrest, but dropped the standing wave assump-
tion, allowing instead for the travelling wave nature of the wire motion
subsequent to the arrest of its ends; and it added an additional restriction
to the effect that there was no initial slack, i.e., the initial loop
height was zero. For this case, Reference 12 showed that the upper bound
Equations (1), (2), and (4) are remarkably accurate -- only 52 too high*.
However, Reference 12 still retained the assumption of instantaneous arrest
and it had added a new assumption, that of zero initial slack; therefore,
the acceptability of Equations (1), (2), and (4) was still in doubt, and
additional work was undertaken.

This additional work consisted of a fairly straightforward extension
of the analysis of Reference 12 to include both finite (non-zero) arresting
time and finite (though small compared to S) loop height, with an initial
parabolic‘wire shape. This analysis led to dimensionless graphs of wire
strain versus time for given initial loop heights and arresting times.
Typical graphs of this kind are shown in Figure 3. In this figure, e is

a "reduced" strain parameter, T a dimensionless time, T, a dimensionless

* 1t showed the strain rsising to a peak value of .95 vo/c in a time of
t = .68 $//Voc, then diminishing rapidly, with the occurrence of the
maximum strain concident with the meeting of a pair of travelling deflec-
tion waves, one from each end of the wire.




ionless stopping times

"reduced strain" e versus dimensionless

time T for different dimens

Figure 3.~ Graphs of

for constant deceleration,

and a dimensionless loop height of h' = 2.0.

(Solid curves are

Tg

)

dashed curve for sinusoidal deceleration.
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stopping time, and h' a dimensionless initial loop height. Their definitions

are:

€c

e v, (5)

T = § e (6)
te

T, =3 Vvoc @)

R O X
h S v0 (8)

where ¢ is the actual strain (elongation divided by original length), t
is actual time, tg is actual stopping time (i.e., the time required for
the velocity of the wire ends to drop from v, to 0), and H is the actual
initial loop height. For simplicity, the deceleration during the arresting
period was assumed to be constant, however the dashed curve shows the
results of one set of calculations in which the deceleration was assumed
to vary like a half-~sine wave instead. It is seen that the latter assump-
tion leads to somewhat higher strains.

By reading the peak values of e from many curves of the kind shown in
Figure 3, it was possible to plot the curves of Figure 4, which gives thé

peak value, e ax® 395 2 function of Ts and h', for the case of constant

deceleration of the wire ends during the arresting period. In accordance

with Equation (5) the actual maximum strain €pax €20 be recovered from the

"reduced" maximum strain € ax by means of the relationship

€ = e — 9)
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Figure 4.- Dimensionless graphs of maximum reduced strain as
a function of stopping time and loop height.




A8 an aid in judging the degree of inaccuracy of the upper bound solution,

Equation (1), as compared with Figure 4, it may be noted that Equation (1)

is equivalent to

€nax " 1 (10)

The results in Figure 4 are interesting and revealing. All of the
graphs start out at TS = 0 with € nax not much below 1.0; thus, if the arrest
is instantaneous, finite loop height does not produce much reduction of
€ max from the upper bound value. Also, for small loop height (h’ = 0) the
graphs of € ax drop down rather slowly as '1's increases; thus, finite stopping
time does not produce much reduction of € max if the loop height
is small. Therefore loop height alone ané finite stopping time alone do
not cause much reduction in the maximum strain below that predicted by the
upper bound solution. However, the graphs show that finite loop height and
finite stopping time together can indeed cause the €max t° be very much less
than the upper bound prediction. Also, in contrast to the upper bound
solution, the more accurate analysis shows that the span S has a very
important effect on Emax' Equation (7) shows that a reduction in § will
increase Ts and therefore (see Figure 4) reduce € ax® Thus, it will be more
difficult to stress short wires in a drop test than long wires. By the same
token, any lengthening of tg will also reduce the stressing capability of
the drop test.

The maximum wire stress and bond force corresponding to any given wire
geometry and stopping time can be obtained fro& Figure 4 through the following

steps: Compute Ts and h' via Equations (7) and (8). Enter these in
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Figure 4 to get € ax’ Then Equation (9) will give € pax and the relations

g = Ee F = Ao (11)
max max max max

will give the maximum wire stress and bond force.

C. Numerical Examples.- In order to demonstrate the calculation

procedures just outlined, we shall consider a 1-mil diameter wire made
of gold (E = 12 x 106 psi, v = specific weight = 0.7 1b/in.3,

p = .00181 lb-secz/in.é), with a span of S = .100 in. and an initial loop
height of H = .006 in., falling with a pre-impact velocity of v, = 8 ft/sec
(which corresponds to a l~foot drop) and, by virtue of highly polished and
highly parallel impacting surfaces, having its ends arrested in 9 micro-
seconds (which corresponds to an average-deceleration of 27,600 g's), and

compute the resulting maximum tensile stress and bond force.

From the given data we have

E 12 x 10 in. ft.
¢ J o J 00181 - 81,424 00 = 6785 00
b B[S . 006 6765

S Vo ".100

.9 x 10 o .
= J 100) 8(6785) .25

12

Entering Figure 4 with Ts = .25 and interpolating between the curves for

h' = 1.5 and 2.0, we read e = ,525, whence
max
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v
€ = e o) 8 _
max max — = (.525) 5785 - .000619

Cpax "~ Eemax = (12,000,000)(.000619) = 7428 psi

L 2 _ -
Fmax Aomax =3 (.001)°(7428) = .00583 1b 2.65 grams

We note that the wire stress of 7428 psi is a significant fraction of
the ultimate tensile strength of gold wires (which is around 60,000 psi).
In order to judge the significance of the 2.65-gram bond force, we may use
Figures 2 and 7 of Chapter 2 to compute the pull P that would be required
in a pull test to produce the same bond force. We first enter Figure 2
with H/S = .006/.100 = .06 and read R = .01 from the "catenary" curve. For
this R and an ordinate of TO/AE = €oax = .000619, Figure 7 gives
P/AE = 1.8 x 10_4. Thus, the required pull is
P=(1.81x 10-4) x [% (.001)2] x 12,000,000 = .00170 1b = 0.77 grams. This
is considerably less than the pre-seal pull strength of 3.0 grams and post-
seal pull strength of 2.5 grams specified in the MIL-STD-883B Method 2011.2.
Thus, thg postulated drop test is not as effective as the pull test.
However, it has the advantage of being applicable to a closed package;
furthermore it is more effective than the centrifuge. According to Equa-
tion (7) of Chapter 2 the number of g's of centrifuge acceleration equivalent
to the postulated drop test is

P .00170
-39vSA (.59) (.7) (.100) [T (.001)

G = 52,400

2

It is not practical to attempt to subject a package to that many g's in
a centrifuge. If arresting times ts shorter than 9 microseconds can be

achieved, the effectiveness of the drop test will, of course, be improved.
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The effects of changing the material from gold to aluminum and the

impact velocity from 8 to 16 ft/sec are seen in the tables below, where

the results of the above calculation and three others are summarized.

Because aluminum has a much lower density than gold, any test methods

that depend on the inertia of the wire will be less effective for aluminum

than for gold.

equally true for the drop test, as the tables show.

This is well known in the case of the centrifuge; it is

However, as the second

table shows, even for the aluminum the drop test retains its advantage in

relation to the centrifuge.

Gold Wire

v ¥ Equivalent Equivalent

o “max max P in a Pull g's in a
(ft/sec) (psi) (grams) Test (grams) Centrifuge

8 7,428 2.65 .77 52,300

16 14,150 5.0 1.5 101,000

Aluminum Wire

v o R Equivalent Equivalent

o max max P in a Pull g's in a
(ft/sec) (psi) (grams) Test (grams) Centrifuge

8 1112 .40 .11 50,800

16 2150 .76 .21 102,000
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I1. BASE STRESSES

We now focus attention upon the base AD of the package in Figure 1 and
examine its flexural response to the suddenly imposed assumedly constant
deceleration of the walls to which it is attached. For this purpose we shall
regard the base as a clamped elastic rectangular plate undergoing small
oscillations during and after the deceleration period and make use of the
approximate analysis of those oscillations in Appendix C, as well as other

approximate techniques.

A. Equivalent Lateral Pressure.- Assuming small deflections and

Hooke's law, Appendix C describes the state of deformation of the plate
(relative to its boundary supports) at any instant t by means of an
"equivalent" uniform lateral pressure p, defined as that pressure which,
if applied statically, would produce approximately the same state of deforma-
tion. Once this equivalent lateral pressure p is known for any instant t,
the dynamic deflections and stresses at that instant can be taken from the
static deflections and stresses produced by it. Inasmuch as many static
solutions are available for uniformly loaded plates, the use of the equiva-
lent lateral pressure concept greatly simplifies the dynamic stress analysis.
For constant deceleration of the package walls during the stopping
period, Figure 1 of Appendix C shows typical graphs of the equivalent
lateral pressure p as a function of time t for different stopping times tes
uging however dimensionless measures of p, t and te» instead of p, t and ts
directly. The dimensionless measures are Q, T and Ty respectively, defined

as follows:
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where m is the mass per unit area of the plate, and w, is the natural
circular frequency of its fundamental mode of vibration. Constant decel-
eration during the stopping period is assumed.

0f special interest are the maximum downward and maximum upward
equivalent pressures. The values of Q corresponding to these maximums can
be read from the positive and negative peaks of the curve for that Tg in
Figure 1. These maximums are summarized in Figure 2 of Appendix C. For
any given Tgs &S determined from Equation (14), the ordinate of the solid

curve of Figure 2, in conjunction with Equation (12), will give the maximum

downward equivalent pressure for base AD of the package, and the ordinate

to the dashed curve will similarly give the maximum upward equivalent

pressure.

In order to use Figure 2 of Appendix C in the manner just described,
one must know the fundamental natural circular frequency wy of the base,
and it can be found with the aid of Figure 3 of Appendix C. 1In this figure,
a and b are the length and width of the base, as measured inside the cavity,
m is its mass per unit area, and D is its plate flexural stiffness. If
the base is homogeneous with Young's modulus E, Poisson's ratio v, thickness

h, and density p, then m and D are given by
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m = ph D = Eh3/12[1 - v?) (15)

and the conversion from equivalent pressﬁle p to deflections and stresses

can be done with the aid of the formulas and graphs in Chapter 1 or the

tables in Reference 3, the most useful of which are reproduced in Appendix B

of the present report. If the base is a two-component composite, like that

shown in Figure 1 of Appendix B, D is computed by means of Equation (5) of

Appendix B, and m from the formula m = olhl + thZ’ where p1 and h1 are

the density and thickness of the upper component, Py and h2 those of the

lower component. (In such a composite base the upper component would

typically be Kovar, the lower component a ceramic.) The conversion from

equivalent pressure ta deflections and stresses would be done on the basis ‘1

of the procedures described in Section V of Chapter I.

B. Numerical Examples.- For the first of two numerical examples we

shall assume that the base AD of the package in Figure 1 is a square ceramic

clamped plate with the following properties:

b = .875 in.

[
L]

=3
[}

thickness = .040 in.

3.85 grams/cm3 = ,0003603 lb/secz/iné

o
[}

50 x 106 psi

™
[}

v = 0,22

o, = flexural strength = 65,000 psi,

b

compute the maximum tensile stress produced in it by the constant-decelera-
tion arrest assumed for the gold wire in Section IC (namely an arrest in
9 microseconds from a pre-impact velocity of 8 ft/sec), and then judge

vhether or not the base is likely to be demaged in such a test.
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From the given data, we have, for the one-component base under con-

sideration,

m = ph = (.0003603)(.040) = 14.41 x 10”° 1b-sec?/ind

En® (50 x 10%) (.040)>

2 5. - 280.2 1b-in.
12(1 -v%) 12(1 - (.22)7]

D=

Entering Figure 3 of Appendix C with a/b = 1, we get

w = 3 ’-l%; - 36 j> £80.2 - = 207,343 sec”!
ua (14.41 x 107%)(.875)

whence

= = -6 =
T,=w t = (207,343)(9 x 107°) = 1.87

For this Tos Figure 2 of Appendix C gives

Q = (-Q)max== .86

The corresponding equivalent pressures are

i+

p = .86 o v

"
i+

.86 (14.41 x 1078

|
)
247 psi f

where plus means downward and minus upward,

(207,343)(8 x 12)

L}
+

The simplest procedure for estimating the maximum tensile stress due
to this pressure is with the aid of Table 1 of Appendix B. It shows the ;
maximum bending moment in the clamped base under uniform pressure to occur

at the middle of the sides and to have the magnitude '
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M = 0513 pa = .0513(247)(.875)2 = 9.70 in=-1b/in,

The stress due to this moment is zero at the middle surface and varies
linearly through the thickness. Its maximum value therefore occurs at
the extreme fibers and is

$ Maax _ 6(9.70)
max 42 (.040)2

o] = 36,400 psi

This is less than the ceramic's flexural strength of 65,000 psi, and the
base is therefore not likely to be damaged by the postulated drop test.

For the second example we assume the same conditions as before, except
that the base AB of Figure 1 is now a two-component base, like that of
Figure 1 of Appendix E, with the upper component .015-in. thick Kovar aad
the lower component .025-in. thick ceramic of the same kind as before,
making the total thickness the same as before. Again let us calculate the
maximum tensile stress in the ceramic and judge whether or not it will
fracture under the postulated drop test.

This two-component base has figured in a previous example (Example 7
of Section VIII of Chapter 1). Therefore, with no additional calculation

we have

D = 179.929 1b-in.

v = ,261

for its plate bending stiffnesses and flexural Poisson's ratio. Taking the
density of Kovar to be 0.30 lb/in? = .000777 lb-seczlin?, and the density ;

of the ceramic to be .0003603 1b-sec2/1n§ as before, we obtain
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m = (.000777)(.015) + (.0003603)(.025)

6

- 20.66 x 10°° 1b-sec?/in3

for the mass per unit area. The fundamental circular frequency is then

o = 36} -3 /ﬁ 12229 ;
ma (20.66 x 10 “)(.875)

1

= 138,762 sec

Therefore

_ -6
Ty T et = (138,762)(9 x 10 ) 1.25

for which Figure 2 of ‘Appendix C gives
Qax = O, = 94

Again the maximum downward and maximum upward equivalent pressures have
the same magnitude.

The pressures themselves are
P=t* .9 mnvo
= % .94(20.66 x 10°°)(138,762) (8 x 12)
= + 259 psi

Visualizing the curvatures of the clamped base under each of these two

"pressures,”" we take the following four stresses as candidates for the

maximum tension in the ceramic: o and 9. at the center of the plate;
21 22

o and o, at the middle of the edge x = 0. (The notation is cthat of

21 22

X




Figures 1 and 4 of Appendix B.) Utilizing the procedure described in

Chapter 1, Section V, we obtain the following values for these stresses

due to the equivalent pressures of * 259 psi

Location Stress Stress
Symbol Value (psi)
g -
Center Xy1 7 12,100
of
Base o
X9 + 24,400
"ig‘f’le %%y + 29,300
Edge
x =0 g -
X5y ¥ 57,000

Thus the maximum tensile stress in the ceramic is the extreme-fiber
stress of axzz = 57,000 psi developed at the edge of the base during the
upward flexing phase of its motion. This is smaller than the flexural
strength of 65,000 psi and would therefore appear to be safe. However, the
judgment of "safe" must be changed to "probably safe" when we take into
account the likelihood that there will be a small gap between the peri-
phery of the ceramic substrate and the walls of the package, examine the
calculated edge bending moment in the Kovar within that gap, and compare
it with the fully plastic bending strength of the Kovar, which was found

to be o, = 4.01 inr1b/in,in the Chapter 1 example referred to earlier.

That calculated edge bending moment is

2 2
Medge .0513 pa” = .0513(259)(.875)" = 10.2 in:1b/in,

which exceeds me by some 2 % times. Thus, we can expect some plastic




hinge development in the central region of each edge. This would reduce

the edge stress 9 in the ceramic to the still safer value of
22
4.01 _
10.2 X 57,000 = 22,400 psi
but it would increase the ceramic stress o in the center of the plate

22
above its calculated value of 24,400 psi by some unknown amount. Con-

ceivably, the increase could bring the total stress in the ceramic up to

the breaking point of 65,000 psi.

C. Incorporation of Elastic Large Deflection Effects: A Simple

Expedient.- Small deflection theory was used in the derivations connected
with "equivalent lateral pressure" (Appendix C). Therefore if the method
of Section A above leads to small-deflection-theory deflections that are
large ({.e., of the same order as the base thickness), those deflections,
the associated stresses, and the equivalent pressure are, strictly speaking,
not correct. The simplest expedient for correcting the deflections and
stresses is to accept the equivalent pressure as correct, but calculate
the deflections and stresses from a large-deflection theory (e.g.,

Figures 12, 14 and 15 of Chapter 1 for a single component base), rather
than a small-deflection theory. There is an admitted inconsistency in
this procedure, but the results obtained thereby will be more accurate

than those obtained by a strict adherence to small-deflection theory.

D. Incorporation of Elastic Large Deflection Effects: A More Rigorous

Approach.- A somewhat more rigorous procedure for incorporating large~

deflection effects into the dynamic analysis of base response is given in




Reference 13, but is restricted to a single-component base and instan-

taneous or near-instantaneous arrest of motion (Q = 1). For a clamped
base, that procedure gives Figure 5 as the relationship between impact
velocity v° and equivalent lateral pressure p. With p known, existing
large-deflection solutions (e.g., Figures 12, 14 and 15 of Chapter 1)
can be used to determine maximum tensile stress and central deflectionms.
If we assume the boundary restraints of Figure 12(c) and 15(c¢) of
Chapter 1, 1in particular, Figures 6 and 7 of the present section are
obtained for the maximun tensile stress o'max and central deflection &

as functions of the impact velocity e

III. LID RESPONSE

Obviously, most of the material in Section II is applicable to the
11d of a flatpack in a right-side-up flatwise drop test. If the 1lid is of
a ductile metal, however, an additional consideration may be important that

was not covered in Section II, namely the effect of plasticity on the

maximum central deflection. This consideration will be taken up in the

present section, with attention restricted to the case of instantaneous

or near-instantaneous arrest (Q = 1).

A. Plasticity Considerations.- For the lower vo's there may be no

plastic yielding at all or the plastic regions may be quite localized,
which means that the computed central deflection neglecting plasticity may
still be reasonably accurate. (It has been suggested in Reference 5 that
the computed central deflections neglecting plasticity are correct even

1f the computed elastic stresses exceed the tensile yield stress by as
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pat/Ent

Pigure 5.~ Craphs for determining lateral pressure p approximately equivalent
to a given impact velocity v, for a clamped rectangular base in

san upside-down flatwise drop test. (Based on approximate elastic
large-deflection theory and instantaneous arrest of boundary
motion vpon impact. Taken from Reference 13.)
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Figure 6.~ Craphs for determining maximum tensile stress °$ax in a clamped
rectangular base in a flatwise upside-down drop test due to
instantaneous arrest of its boundary from a velocity v,. (Based
on approximate elastic large-deflection theory. Taken from
Reference 13.)
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Figure 7.~ Graphs for determining maximum central deflection § produced in
a clamped rectangular base in a flatwise upside-down drop test
due to instantaneous arrest of its boundary from a velocity vg.
(Based on approximate elastic large-deflection theory. Taken
from Reference 13.)
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much as 50%.) For more severe impacts the reglons of plastic flow may
become comparable in extent with those of elastic deformation, and then
the elastic calculations could seriously under-estimate the central
deflection. Unfortunately, the analysis of rectangular plates in which
elastic and inelastic deformations are of comparable importance is very

difficult, and we shall not attempt it here. Paradoxically, the case

of very highly developed plasticity, as might occur with the larger vo's
in instantaneous or near~instantaneous (Q = 1) arrests, can be handled
more easily, using limit or yield-line analysis. Such an analysis was
carried out in Reference 13, and the following result was obtained for

the maximum central deflection § of a constant-thickness clamped rectangular

1id as a function of the pre-impact velocity v, for the case of instan-

taneous Or near~instantaneous arrest:

where h, a and b are the thickness, width and length of the 1lid; o is the

density of the 1id material; o, is the modulus of rupture of the 1lid

b

material; and

2t1a b ’ a,2
Z"s[g+3;+ (;) +3] 17)

The modulus of rupture % is related to the fully plastic bending strength

mp as follows:
m_ = 0,h%/6 (18)
P b

Therefore Equation (16) may be written as
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§ = o — (19)

If the 1id has a thinned edge, as in Figure 2 of Chapter 1, with thickness
he less than the thickness h of the rest of the 1id, the fully plastic

bending strength in the edge region will be

2
mpe obhe /6 (20)
and instead of (19) the following deflection formula is obtained:

2
h bavo I}

= ZE m +m
pe P

$ (21)

Inasmuch as m__ and m_ are proportional to the squarns of h and h_,
pe P pe P

mpe will usually be much smaller than mp, allowing Equation (21) to be

simplified to

h

§ =% m
p

B. Maximum Deflection of a Constant-Thickness Ductile Lid.- Given the

v, of a right-side-up flatwise drop test of a package with a constant-thick-
ness ductile 1id, we do not know at the outset if plasticity effects need

to be considered in calculating the maximum central deflection 6 in an
instantaneous or near-instantaneous (Q = 1) arrest. Therefore the following
procedure 1s recommended for arriving at this deflection:

(a) Compute § considering the 1id as a clamped plate and ignoring plas-

ticity -- i.e., by the methods of Section II.

Compute § on the basis of yield-line analysis -- i.e., using Equa-

tion (16) or (19).




Both of these calculations will probably under-estimate &, the first because
it neglects plasticity, the second because it assumes the 1id to be rigid
everywhere except along the yield lines. Therefore take the larger of

the two resulis as the better estimate of the maximum central deflection.

C. Maximum Deflection of a Ductile Lid with Thinned Edges.- The

following steps are recommended in this case:

(a) Compute the edge bending moment normal to the middle of the longer
edges considering the 1id to be a clamped plate and ignoring plas-
ticity -- 1.e., by the methods of Section II. 1if this bending
moment is smaller than mpe’ you may assume that there are no plas-
ticity effects; therefore do step (a) of the preceding section and go
no further. If the bending moment is larger than m,s plastic hinges
will have formed over some portions of the edges, and the 1id may
actually be behaving more like a simply supported plate than a
clamped plate. Therefore do the following steps.

(b) Compute 8§ considering the lic to be a simply supported plate and

ignoring plasticity -- i.e., by the methods of Section II, using
tables and/or graphs that apply to simply supported plates, rather
than to clamped plates. This will be a conservative (i.e., too

large) estimate of the elastic central deflection.

(c) Compute § on the basis of yield-line analysis -- i.e., using
Equation (21) or (22).
(d) Take the larger of the above two 8's as the best estimate of maximum W

central deflection.
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D. Numerical Examples.- Let us determine the maximum inward central

deflection of a constant-thickness Kovar 1id due to a 16 ft/sec impact

in a flatwise right-side-up drop test, assuming essentially instantaneous
arrest of the package walls. The dimensions and properties of the 1id are:
a=.92 in., b = 1.84 in., h = .010 in., E = 20 x 10® pst, v = 0.3,

o, = 107,000 psi, p = 0.3 lb/in3 = .000777 lb-seczliné.

b

From the given data,

= 2 = 0.5

o

a
b

-6 2,. 3
m = ph = (.000777)(.01) = 7.77 x 10 = 1lb-sec”/inJ

A

e’ Y (20 x 105 Cop?

12(1 -v3) 121 - .37

D= = 1.8315 lb-in.

Figure 3 of Appendix C then gives

w = 24.5/ 2 - 24.i/r L8 - = 14053 sec™"
ma (7.77 x 10 7)(.92)

For near-instantaneous arrest, Figure 2 of Appendix C gives Qmax = 1.

Therefore Equation (12) gives the equivalent pressure as
p=mwv = (7.77 x 10_6)(14053)(16 x 12) - 20.965 psi

The corresponding small-cdeflection~theory center deflection from Table 1

of Appendix B or Figure 14 of Chapter 1, is,

4 4
. pa” _ (20.965) (.92)* _
§ = .00254 B&- = 00254 WETE .0208 1in.

This 1s larger than the 1id thickness of .010 in. Therefore a correction

is needed. Adopting the suggestion of Section IIC, we shall accept the
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calculated p and use Figure 15(c) of Chapter 1 to obtain the deflection

correction factor ng for that p. To that end we compute

pa® _ (20.965)(.92)"

4

- 75
En® (20 x 10%)C.on?®

Entering this and b/a = 2 into Figure 15(c) of Chapter 1, we find that

ng = .89, The corrected central deflection is therefore

§ = (.0208)(.89) = .018 in.
This completes step (a) of the Section B procedure.

For Step (b), we use Equations (17) and (16) to compute a second § 1

estimate, based on yield-line theory, as follows:

z = % 0.5+ 3(2) + [©0.52 + 3] = 5.535

3 (1.84)(.92) (16 x 12)2(.000777) _
4(5.535) o1 107,000

.006 in.

§

The larger of the two § estimates, namely .018 in., is taken as the

better one.

IV. FEASIBILITY OF THE DROP TEST AS A SCREEN

On the basis of the studies in Sections I and II, some observations
can be made about the feasibility of the flatwise upside-down drop test
as a stressing device for the wires in closed flatpacks.

First, it is clear that, as far as the wires alone are concerned, any

significant stressing will require rather short stopping times ts -- stopping , A

times on the order of several microseconds.




Secondly, in ordét for those short stopping times not to result in
damage to the base of the package, the pre-impact velocity \A will have
to be small -- say of the order of 8 ft/sec.

Thirdly, if these conditions can be met, there will be at least some
(not all) wire configurations that can be stressed sufficiently to rupture
poor quality wires or bonds. The stressing will be most effective for the
longer wires (say S > .1 in) of denser material (e.g., gold) and least
effective for the shorter (S <.l in) and lighter (aluminum) wires.

The requirement of small v, can be met by having the package drop from
a sufficiently small height. Meeting the small ts requirement is more
difficult; it will require that the surfaces that come in contact during
the impact be highly polished and highly parallel, so that the closure of
the gap between them can be accomplished in a very short time.

A suggested apparatus for the drop test is shown schematically in
Figure 8. It would consist of two equal-diameter hardened solid cylinders
A and B, of bearing steel (say AISI 52100), one above the other and with
their axes vertical. The lower and slightly longer cylinder would be
firmly grounded. The upper cylinder with surfaces ab and cd highly polished
and parallel, would carry the test package firmly pressed to its upper
surface ab, and, suitably guided, would fall and strike the lower cylinder.

If the impacting surfaces cd and ef were flat and parallel to within close

tolerances, surface cd would experience a near-instantaneous velocity change.

Through wave action this velocity change would be replicated, with a time

delay, at the upper surface ab, and there imparted to the package. (Note

that 1f Yo is the desired impact velocity, the falling speed 4 of the




upper cylinder would have to be Zvo, as indicated in the sketch. The reason
is that surface cd is brought to rest only with respect to a reference

frame in which the two cylinders are approaching each other with equal
speed; such a reference frame is one that is moving downward with a speed
of v1/2. Relative to this reference frame, the surface cd is brought to
rest from : speed of vl/2. Therefore v1/2 must equal the desired vo.)

The crucial question is whether the surface asperities can be made
small enough and the parallelism maintained well enough to produce gap
closures in times as short as several microseconds. Experiments performed
in another context suggest that this may indeed be possible, The experi-
ments referred to are those conducted at the Sandia Laboratories and else-
where for determining material properties at high strain rates. These
experiments involved the impact of highly polished parallel surfaces, and
the literature resulting from them (e.g., References 14 and 15) reports
closures occurring in nanoseconds. Of course, the impacting velocities
in these experiments were several orders of magnitude higher than the
8 ft/sec velocity proposed for the drop test, but then the required closure
times in the drop test are correspondingly several orders of magnitude
slower, being measured in microseconds, rather than nanoseconds.

Thus, it is likely that techniques are available for achieving the
degree of surface flatness and parallelism needed in the drop test. It
is conceivable that the air in the gap between the two cylinders might
serve as a cushion to impede rapid closure, in which case that gap should
be evacuated or the apparatus enclosed in a vacuum chamber. Also, some

developmental effort would undoubtedly be needed in order to achieve firm

-129-




contact between the package base and surface ab of the cylinder holding
the package; lapping of the package base and the use of a thin liquid
film between package base and cylinder surface are two techniques that
could be tried.

It does not appear that further analysis and reasoning can provide a
definitive answer to the question of the feasibility of the proposed drop
test apparatus. However, the concept does seem promising enough to make
the development of a prototype device a worthwhile undertaking, if
entrusted to one of the groups experienced in the study of material pro-

perties at high strain rates through the impact of highly polished parallel

T a b
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A

surfaces.
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Figure 8.- Schematic diagram of drop i
test apparatus (LB > LA)'




Chapter 4 - EDGEWISE IMPACT

In this chapter (which is based largely on Reference 13) we consider
a flatpack in edgewise impact on a rigid surface (Figure 1) with a velocity
v parallel to the longer dimension, and review some possibly damaging

effects this impact could have on the lid or base. The 1id and base

types to be considered are shown in Figure 2.
I. SINGLE-COMPONENT LID OR BASE

A. Elastic.- The single-component 1id or base impacting edgewise with
velocity v on a rigid surface (Figure 3) can, in first approximation, be
treated as a uniform rod. When the material is linearly elastic (obeys
Hooke's law), the classical theory of impact for a rod (Reference 16) indicates
that a compressive stress ¢ will start to propagate upyard immediately
upon contact, travel with the speed of sound ¢ in the material, and
eventually encompass the entire length of the 1id or base (Figures 3(c) and
(d)). A tensile stress of the same magnitude will then propagate downward,
cancelling out the compressive stress as 1t goes (Figure 3(e)).

If E 1is the Young's modulus of the material and p its density,

the magnitude of the compressive stress will be
o=TE (1)
c

where
c = /E/o ¢))]

is the speed of sound in the materfal. Supposing that the velocity v is d:=

to a free fall from a height h, we may write




Figure 1.- Edgewise impact of
a rectangular flat-
pack on a rigid
v surface.
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Figure 2.- Lid and base variations considered: (a) Constant-
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Figure 3.-

thickness 1id or base. (b) Lid with thinned
edges. (c) Two-component base.
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Edgewise impact of 1i{d or base on rigid surface. (a) Front
view. (b) Side view. (c) Compressive stress wave travelling
upward. (d) Wave front has reached top edge. (e) Unloading
wave travelling downward. (v = {mpact velocfty; ¢ = speed
of sound {n the material.)
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v = /2gh (3

where g = acceleration of gravity = 32.2 ft/sec2 = 386 in/sec2 = 9.8 m/sz.
Using this to eliminate v in Eq. (1), and Eq. (2) to eliminate c, we

arrive at the following alternate formula for o:

o = V2ghpE (4)

The compressive strain ¢ corresponding to o 1is o/E. Thus,
€ = vfe = wp/E = V2ghp/E ()

In a free fall from a small height, v and h are rather small,
but E 1is generally very large; therefore Eq. (1) or (4) can lead to
significant stresses. For example, let us consider two specific materials,

a Kovar 1id and a ceramic base with the following properties:

Kovar Ceramic
(1b/1a?) 20 x 10° 47 x 10°
E 2 6 6
(1b/£e") 2880 x 10 6800 x 10
o (1b-sec2/ft4) 16.2 7.18
c = /B/p (ft/sec) 13,300 30,700

An impact velocity of 16 ft/sec, which corresponds to a 4-foot drop, will

lead to a compressive stress of

c = X E 16

6
p 13,300 (20 x 107) = 24,000 psi (6)

in the Kovar and
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16

% * 30,700

(47 x 10%) = 24,500 psi N

in the ceramic.

The likelihood of these stresses causing damage can be judged by
comparing o with the compressive buckling stress Ier of the component
under consideration and, in the case of ceramic, also with the compressive
strength o of the material. The elastic compressive buckling stress
c of the 1lid or base shown in Figures 3(a) and (b), taking into account

cr

the edge fixity furnished by the package walls, is
o = kE(t/a)? (8)
cr

where k 1s the function of b/a given by the solid curve in Figure 4
(adapted from Reference 17). The compressive strength o, of a ceramic
is generally an item of information supplied by the manufacturer.
For illustrative purposes, let us apply these damage criteria to
the Kovar 1id and ceramic base considered previously, assuming the following

additional characteristics:

Kovar Ceramic
a (in.) .92 .92
b (in.) 2.22 2.22
b/a 2.5 2.5
t (in.) .010 .030
O (psi) |}  ====- 375,000

From Figure 4 (solid curve) we find that k = 6.95, whence Eq. (8) gives

the following buckling stresses:
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2

o = 6.95 (20 x 10%) ({‘9’—;) - 16,400 psi  (Kovar) (9)
6.,.03, 2
O ™ 6.95 (47 x 10 )(—530 = 348,000 psi (Ceramic) (10)

Comparing (6) and (9), we conclude that the Kovar 1id is very likely to
buckle under its impact-induced compressive stress of 24,000 psi. On the

other hand, the corresponding stress of 24,500 psi 1in the ceramic base (see

Eq. (7)) is well below both the buckling stress, Eq. (10), and the
material compressive strength quoted in the table above.

The buckling of a Kovar 1id may be tolerable if the out-of-flatness
resulting from any permanent buckles is acceptable. In the case of a Kovar
base to which a ceramic substrate is attached with only a few bonds, the
impact-induced buckling could conceivably damage the bonds and cause
separation of the substrate from the base, which suggests the possible
usefulness of the edgewise drop test as a screen for such bonds,

The fact that a thin Kovar 1id or base can indeed buckle under impact
of the severity assumed in the illustrative example is evidenced by
Figure 5, which shows the buckles observed in a Kovar base after it had
been dropped (with random orientations) onto a linoleum-covered floor

several times from a height of 3 or 4 feet.

B. Inelastic.~ The formulas given above are based on the assumption
that the material obeys Hooke's law, that is, that the ratio of the compres-
sive stress o to the corresponding strain ¢ 1s constant. 1In brittle
materials like ceramics, the proportionality of stress to strain is thought

to hold up fairly well up to the point of fracture. Therefore the assumption

~136-




Figure 5.~ Kovar package bases (.92 in. x 2.22 in. x .010 in.)
Left: Undropped base. Right: Base that had been
dropped onto a linoleum~covered floor several times
with random orientations from a height of 3 or 4
feet; note permanent buckles produced by the impacts.

nf———————
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Figure 6.- Compressive stress-strain curve of a ductile
material.
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Figure 7.- Shape of advancing stress wave in inelastic impact.
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of Hooke's law probably does not seriously limit the validity of the Section
A formulas when we are dealing with a ceramic 1id or base. However, for
ductile materials such as Kovar, which possess a compressive stress-strain
curve like that shown in Figure 6, the linear relationship between stress
and strain breaks down at a point called the "proportional limit," symbolized
by P 1in Figure 6. Consequently, Eqs. (1), (4) and (8) are invalid for a
Kovar 1id or base if the stresses they predict exceed the proportional limit
stress cp. This is possible for Eqs. (1) and (4) if the height of fall is
sufficiently great and for Eq. (8) if t/a is sufficiently large. In order
to allow for those possibilities we shall now generalize the considerations
of Section A to the so-called inelastic case.

We shall assume that the material property information needed for this
generalization is available, namely the compressive stress-strain curve,
whose equation we symbolize by o = f(g¢). From the stress-strain curve two
other quantities can be obtained as functions of €. They are the tangent

modulus Et(e) and the secant modulus Es(e), defined by
Et = df /de Es = f(e)/c (1)

and representing, respectively, the slope of a tangent and the slope of a
secant at the point (o,e) (see Figure 6).

With Et and Es defined, we can now give the formulas related
to inelastic edgewise impact, that is, impact in which v is sufficiently
large to produce compressive stresses exceeding the proportional limit.
When this is the case, the distribution of stress along the height of the
package is no longer as shown in Figure 3. Instead the advancing stress

wave has the shape shown in Figure 7, and different parts of the wave travel




with different velocities, all of them less than or equal to <¢. The maximum

compressive stress O nax is of main concern to us here, along with the asso-

ciated strain € pax’ The latter is defined implicitly by the following

equation from Reference 3:

v = [ /Et(s)/o de (12)

To use this equation we need a graph of the right side as a function of its
upper limit e . Once ¢ is known, the corresponding stress o
max max max

can be obtained from the stress-strain curve; that is,

Opax = f(emax) (13)

Equations (13) and (12) take the place of Eq. (1) or (4) whenever the latter
two lead to o > op.

The usual modification of Eq. (8) to account for inelastic material
behavior consists of introducing a "plasticity reduction factor" n on

the right side to get
g _ = nkE(t/a)2 A (14)
cr

For n we adopt the following formula from Reference 18:

1/2
2 \E E
(l-v Y sl 1 _t
n 2)E(2Y2 @8 1s)
1 =-v s

&
&lw

where v = the elastic value of Poisson's ratio 0.3 and vp is the

plastic value given by
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E -
s
= - — - 6
vp 0.5 7 (0.5 - V) (16)

The Es and E.t values in Eqs. (15) and (16) must be the ones associated

with the buckling stress Op Therefore n 1s itself a function of Oups
which implies that Eq. (14) must be solved by a trial-and-error or ' :

iterative technique. . However, Eq. (14) can be rewritten as

2
ocr/n = kE(t/a) (17)

and the left side plotted as a function of Op From this graph the )
value of o _ at which ocr/n equals kE(t/a)2 can be picked off,

thus avoiding trial-and-error or iterative calculation. ,

C. Lid with Thinned Edges.- In Sections A and B it was tacitly assumed

that the 1id or base was a constant thickness. When the 1id has thinned
edges, as in Figure 2(b), and the thickness of the edges is much smaller
than that of the rest of the 1id, their moment resisting capacity is very N
small compared to that of the rest of the 1lid. For simplicity and conserva-
tism we may neglect this capacity entirely; that is, we may assume that the
edges of the 1id are simply supported (hinged).
This assumption leads to the following change in the preceding material:
The value of k in Equations (8), (14) and (17) should now be based on the
dashed curve in Figure 4 (taken from Reference 19).

|

z II. TWO-COMPONENT BASE.

We now assume the base to be a well-honded two-component plate as in Fig-
ure 2(c), with the Young's moduli of the individual components being El and

Bz, the corresponding thickness tl and tz and the corresponding densities
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G and Py For such a base many of the formulas of the preceding section

are still valid provided that the symbols are re-defined.

A. Elastic.- If a strip of such a base is stretched to a strain of

€ in the elastic range, the stresses in the individual components will be
= E ¢ o, = Eze (18)*

and the mean stress o on the cross section will be

E.t, + E, t
°‘(1:1+c22 . (19)
17 %2

Thus, such a strip behaves in extension or compression like a homogeneous

material with an effective Young's modulus of

E,t, + E,t
T (20)
1 2

The mean density p of such a strip is given by a similar formula?
p,t, + po,t
1 2
p =21 22 (21)

t1+t2

With E and p now defined as above, and with ¢ now interpreted as mean
stress on the cross section, Equations (1) through (5) become valid for
the two.component base. Corresponding to any o, the stresses in the

individual components are

E E
-t -2
GNTEC o= g O (22)

in accordance with Equations (18), (19) and (20).

* Here we are neglecting small stresses that arise in the transverse
direction if the two components have different Poisson's ratios.
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The value of 0 required to cause buckling can be found from the

formula

. __10.9 kD (23)

cr 2
a (tl + t2)

where k 1s the function of b/a plotted in Figure 4, and D is the plate

bending stiffness computed from Equation (5) of Appendix B.

B. Inelastic.- From the compressive stress-strain curves of the

individual components, or by means of experiment, one can determine an

effective compressive stress-strain curve for the two-component composite.

Let us suppose the graph in Figure 6, with o now defined as the mean
stress on the cross section, to be that stress-strain curve. Then
Equations (11), (12) and (13) become valid for the composite.

For determining the value of o required to cause buckling, it is

suggested that the following modification of Equation (23) be used:

o, = n 10.9 kD (24)
a (t1 + t2)

with n calculated from Equations (15) and (16).

=142~

N omal an




Chapter 5 - SINUSOIDAL VIBRATION

It has been suggested that sinusoidal vibration could be used as a
wmeans of stressing the internal wires of microcircuit packages. In this
chapter the practicality of this suggestion will be considered, with
special reference to vibration parallel to the package base and perpen-
dicular to the plane of the wire loop, so that the predominant mode of
stressing is flexure with a small amount of torsion.

We first note that commercially available shakers have peak accelera-
tions that are relatively low (in the 100’'s of g's) compared to the accel-
erations of 1000's of g's that were found to be needed in Chapter 2,
Section IV, in order to produce significant wire flexure in a centrifuge.
Therefore one can hope to achieve significant wire stressing with a com-
mercially available shaker only if it can provide frequencies that are at
or near the natural frequencies of the wire for normal mode vibration in
a direction perpendicular to the plane of the wire -- i.e., only if a
state of resonance or near-resonance can be developed. Therefore it is
important to know what these natural frequencies are.

The fundamental natural frequency f of any wire for vibration normal
to its plane can be estimated with the aid of Figure 1. The symbols in

Figure 1 are defined as follows:

i f = fundamental natural frequency (Hz)(cycles/sec)

S = gpan (in.)
d =

H = loop height (in.)

diameter (in.)




c = speed of sound in the wire material (in./sec.) = oy
E = Young's modulus (lb/in.z)
p = density (lb-secz/in.A)
The units indicated in parentheses are typical; any other set of consistent
units may be used. In computing the data for Figure 1 the wire shape
was assumed, for simplicity, to be a circular arc and Poisson's ratio was
taken to range from 0.3 to 0.4 (the values for aluminum and gold,
respectively). The analysis leading to Figure 1 was based on the curved
beam equations (6.1.7) and (6.1.8) of Reference 20, converted to dynamic
form. The conversion consisted of changing all the ordinary derivatives
to partial derivatives and replacing the distributed loading term p by the
inertia loading mazv/at2 (wm = mass per unit length, v = deflection perpen-
dicular to the plane of the wire, t = time). The resulting equations were
solved in a more or less standard fashion for an excitation that consisted
of a simple harmonic motion of the attachment points in a direction perpen-
dicular to the plane of the wire. In this approach, a natural frequency is
an excitation frequency that produces infinite response for any finite
excitation amplitude, no matter how small.

In order to illustrate the use of Figure 1, let us determine the
fundamental natural frequency f of a .00l-in. diameter gold wire
(E = 12,000,000 psi, p = .00181 Ib-sec’/in.%) of .100-in, span and .010-in.

loop height. For this wire

B _ .010 _[E _ [12,000,000 _
s 100 0.1 c j>p j’ * 50181 81424 in./sec
=144~




cd

H/S

Figure 1.- Graph for determining fundamental natural
" frequency f (Hz) of a circular-arc wire

with circular cross section, for vibration
perpendicular to the plane of the wire,
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For this H/S, Figure 1 gives SYf/cd = ,908, whence

£ = (.908)2 5% = (.908)2 —(—f’—lﬂ“—)—(—‘—(z’-(’—l-)— = 6700 Hz
s (.100)

This 18 a frequency that commercially available shakers are capable of

developing.
In order to gain further insight into the natural frequencies of
microcircuit wires, we may consider H/S = .11 to be a representative height

to span ratio, giving SvYf/cd = .9, and use this relationship to plot

graphs of S and d combinatiops leading to selected frequencies f. Those
% graphs are shown in Figure 2 for aluminum wires and Figure 3 for gold wires.

Pocussing attention on 1-mil diameter wires (.00l in.) as typical, and
considering that 50,000 Hz is about the upper limit of frequencies achievable
with commercially available shakers, we see from Figure 2 that resonance
can be induced in aluminum wires if their spans are greater than 55 mils,
and in gold wires if their spans are greater than 36 mils.

Thus, it would appear that significant flexural stressing can be
induced in a large fraction of microcircuit wires through sinusoidal vibra-
tion on a shaker capable of a frequency sweep up to 50,000 Hz. Despite
this capability, sinusoidal vibration is not necessarily to be recommended
as a mechanical screen for microcircuit wires. One reason is that the
internal damping of these wires might not be large, with the result that
resonance could destroy good wires as well as bad ones, unless the fre-~
quency sweep were fast enough to avoid excess dwell in the vicinity of any
one natural frequency. How fast ‘he sweep should be is something that

would have to be determined by trial and error. A second reason is that y
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shakers capable of developing frequencies up to 50,000 Hz can accommodate
only very small masses; thus only one package could be tested at a time.
! And a third reason 1is that similar wire flexing can be produced more
easily and in a more controlled fashion by means of the centrifuge, as ,

was shown in Chapter 2.
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Chapter 6 - THERMAL SHOCK: FLEXURAL STRESS
IN FLATPACK LID SEALS

The screening of microelectronic flatpacks by means of thermal
shock, via Method 1011.2 of MIL-STD-883B, involves the sudden
insertion of the package into hot and cold fluid baths alternately
for fifteen or more cycles. The package is allowed to remain in each
bath at least 5 minutes. Increasing severity levels of screening are
achieved by increasing the temperature of the hot bath and/or reducing
the temperature of the cold bath.

In the first moments after the package is transferred into a bath
a very marked variation of temperature is developed through the thickness

of the lid. This non-uniformity of temperature would cause a curvature

to develop in the 1id if it were detached from the rest of the package.
However, because the lid is not detached from the rest of the package,
but is instead bonded to rather short (therefore stiff) side walls,
this curvature tends to be suppressed, the mechanism of suppression
being bending moments transmitted from the side walls to the edges of
the 1lid. These bending moments produce flexural stresses in the wall-
to-11id seal; that is, stresses that vary from tension to compression
across the width of the wall. These stresses can exceed the allowable
working stresses for the seal material, thereby producing some damage
and a possible loss of hermeticity.

Consequently, it is important for both the designer and the
purchaser of the flatpack to have some means — preferably simple
formulas — of estimating the flexural stresses induced in the seal
during thermal-shock screening. Having such formulas and knowing the

level of severity of the screening that his package will have to
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undergo, the designer of the package can so design it as to keep the
flexural stresses at or below their allowable values for the seal
material he plans to use. Having the same formulas and knowing what
the minimum acceptéble strength of satisfactory seal should be, the
purchaser of an already designed package can select a screening level
severe enough to damage seals whose strengths are below this acceptable
minimum, but not so severe as to damage seals whose strengths are ]
greater than 1t.*

This chapter, which is based on Reference 21, presents formulas
of the kind just referred to. The formulas are developed with par-
ticular reference to thin packages with constant-~thickness lids;

their planform may be rectangular, as in Figure 1, or of any other

shape. They are based on a simpliffed one-dimensional heat-flow
analysis and on the assumption of linear elasticity (Hooke's Law)
for the 1id material. Two kinds of seal geometry are considered.
In the "wide seal" (Figure 2(a)) the seal width v, is essentially
equal to the thickness w of the wall. In the "narrow seal”

(Figure 2(b), the seal is much narrower than the wall (ws << w) and

is located along the outside rim of the wall-1id interface.

I. SYMBOLS

The symbols related to package and seal geometry are shown in

Figures 1 and 2. The symbols to be used for the fluid and 1id physical

constants are as followsg

*

It should be noted, however that the latter objective (the
screening out of low quality seals) can be achieved in other ways as
well; for example, through the use of external pressure (see Chapter 1).,
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Figure 1.

- Flatpack configuration.
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Pigure 2. - Seal geometries.
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T_ = temperature

k_ = thermal conductivity
of a fluid 1
c,. = specific heat

Pg = density

T, = temperature

kz = thermal conductivity of the high-

c, = specific heat temperature fluid

p2 = density

T, = temperature

k, = thermal conductivity of the low-

1
c, = specific heat temperature fluid

p, = density

“\

E = Young's modulus

v = Poisson's ratio

a = thermal expansion coefficient A
} of the 1id material
k = thermal conductivity

specific heat

density _,)

room temperature

uniform 1id (cover) temperature just prior
to the immersion of the package in a bath

It should be noted that Tc will equal Tr for the first immersion and

*
T2 or T, (alternately) for the subsequent immersions. Similarly,

1

*
We are assuming here that the package remains in each bath long
enough for its temperature to become uniform and stablized at the bath

temperature.
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Tf will equal T2 or Tl, depending on whether the package 1s going
intc the high-temperature or low-temperature bath, respectively.

Corresponding statements apply to kf, Ce and pf'

Any consistent units may be employed for the above defined
quantities. Here we give some commonly used ones for the sake of

illustration and in order to show the dimensions of the quantities:

Temperature (Tf, T2, Tl, Tr’ Tc) : F

Thermal conductivity (kf, kz, kl, k): Btu—ft/(ft2—°F-sec)

Specific heat (cf, Cys €15 c) : Btu/lb ‘
3 .

Density (pgs Py Pps P) : 1b/ft i

Young's modulus (E) : psi %

Poisson's ratio (V) : [dimensionless] :

Coefficient of expansion (a) : ("F)"1

Two dimensionless groupings of the physical quantities arise
naturally in the course of the analysis; they will be represented by

the symbols R and S, defined as follows:

_[Pg Sf ke _|Pg G K¢
Rz L% szif— L -t
p kf p ¢ k
Also, .
S. = ?_Z.Sg._lig_ S . z i]:._c.l.l:l
2‘Lp ¢ k 1 yp ¢ %k

Other symbols will be introduced as they are needed.




I1. THERMAL ANALYSIS

The maximum seal stresses occur in the very first moments after
immersion of the package into a bath. We shall assume that in this
short time (a) convection has not had a chance to develop and (b) any
significant temperature perturbation in the fluid is confined to a thin
layer adjacent to the surface of the 1id. These assumptions permit the
following additional ones to be made: (c) The transfer of heat between
11d and fluid occurs only by conduction. (d) The direction of this
conduction is perpendicular to the lid. (e) At any instant the
temperature variation (in fluid and 1id) along a line perpendicular to
the lid is the same at all points of the 1id surface. We have thus
reduced the temperature analysis to a one-dimensional heat-conduction
problem.

To expedite the solution of this heat-conduction problem in a
manner that will lead to simple formulas, we shall make the following
further idealizations: (f) At any instant the temperature pe?tur—
bations have penetrated only a finite distance into the fluid and 1id.
(g) Within each of these penetration regions the temperature varies
linearly with respect to distance from the lid-fluid interface. Simi-
lar simplifications were first employed by Levy (Réference 22) in
another context.

On the basis of the above, we shall now analyze the transient
temperature conditions that follow the (assumedly instantaneous)
insertion of a package into a fluid bath. We take the fluid and 1id
temperatures to be uniform at Tf and Tc' respectively, just prior

to the insertion. These uniform temperatures are indicated by the
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dashed lines in Figure 3(a). The solid lines in Figure 3(a) show the
temperature distribution at some time after insertion, when the temper-
ature perturbations have penetrated a distance df into the fluid and

dc into the 1lid, with dC still less than the thickness t of the lid.

The 1id and fluid are assumed to have a common interface temperature

T,. In accordance with assumption (g) above, we show a linear variation

i

of temperature from T £ to Tc in the temperature-perturbed region of the

i
1id and a linear variation from Ti to Tf in the temperature-perturbed
region of the fluid. Figure 3(b) similarly shows the temperature
distribution at a later time, when the temperature perturbation has
already penetrated through the entire thickness of the 1lid. The
temperature of the inner face of the 1lid is no longer constant at Tc;

its value, which now varies with time, is denoted by Tc'.

The penetration distance df is a time-like parameter since 1t changes
monotonically with time. It is appropriate, therefore, to first deter-
mine dc, '1'1 and Tc' as functions of df, then relate df explicitly to
the time 1 (measured from the instant of insertion). 1In the analysis,

the two regimes represented by parts (a) and (b) of Figure 3 must be

considered separately.

A, Case (a): dc < t.- We start with Figure 3(a) and consider a

heat balance for the tube of material, of unit cross-sectional area,
shown at the left of the figure. First, the heat loss from the fluid,
represented by triangle ABC, must equal the heat gain of the 1lid,

represented by triangle ADE; thus

1 1l
3 df(Tf - Ti)pfcf - 2 dc(Ti - TC)OC (1)
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Secondly, the temperature gradients in the two materials must represent

the same rate of heat flow across the interface; that is,

£ i i c (2)

Division of one equation by the other gives the following formula for

the penetration distance dc:
d =Rd 3)

P ¢
R = e 4)

nrlx [

Equation (2), with dC eliminated via equation (3), now gives

TS + T,
T s L )
where
o, c. k
£ £ £
S = . (6)

We have thus determined dC and Ti as functions of df. The absence of

d,. from Equation (5) indicates that the interface temperature Ti remains

£
constant as long as dc is less than t. Equation (5) can be re-worked

to give the temperature differences Ti - Tc and Tf - Ti as fractions

of the temperature difference Tf - Tc' The result is

Ti - Tc

-5 . Te- Ty L1
Tf—Tc S+l Tf-Tc s+1 (78’b)
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It is interesting that the interface temperature Ti obtained

above on the basis of rather extreme simplifying assumptions agrees
with the exact result cited in Reference 23 for the interface
temperature instantaneously developed in the case of two semi-
infinite solids at different uniform temperatures placed together

in perfect contact.

B. Case (b): Temperature Perturbation Extends Through Entire

* .
Thickness of Lid . - The above analysis is valid as long as the dc

given by Equation (3) is less than the 1id thickness t; that is, as
long as df < t/R. Here we consider the case df > t/R, which is depicted

in Figure 3(b). For this case the equations corresponding to (1) and

(2) are,
(8)
1 - =31 - ' _
2 df(Tf ’l‘i)chf 2 t[(’r1 Tc) + ('1'c Tc)]pc
T, - T T, -T'
f i i ¢
ke =g =k =g 9)
Solving simuyltaneously for Ti and Tc’, we obtain
k p, c. d
ft £ f°f
Tf(k df + T T ) + 2Tc
T T i o . d (10
Yee ,Pe%%,, |
k df p ¢ t .
k p. c. d k
fe  £°f £ £t
Tf(— k df + o ¢ t ) + ZTc(1 + k df)
’-
Tc k p. c. d (1)
e Pelele,
k df p ¢ t

* It will be shown subsequently that the maximum stress in the
seal occurs in the regime described by Figure 3(a). Consequently, the
reader who is interested only in knowing what this stress is, and 1is
not concerned with the entire time-temperature history, can skip )
directly to the section entitled STRESS ANALYSIS.
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These results lead to the following temperature ratio formulas:

kee e %d

T, - T k 4d P ¢ t
c . f 12a)
T. -T. " % o o, d (12a
c ft £ £,

k df p ¢ ¢t
T -T
'rf—ri'k zc d (12b)
£7 ¢ ‘fr %% %

k d p ¢ t

£

_kee L Pelede
T'~-T k d p ¢ t
P TTON R : a a3
£ ¢ £  Pef

kdf p c t

s XE e
T, -T' k d
T1 - TC - k £ d (1%)
£7 % e Pefe%

k df p ¢ t

Equations (10) to (14) define various temperature quantities as

functions of the time-like parameter de for the range d; > t/R.

C. Time-Temperature Relation for Case (a) - We shall now study

the dependence of df on the time 1, starting with Case (a). The left :

side of Equation (1) is the heat Q lost by the fluid tube per unit
cross-gectional area, and the left side of Equation (2) is the time

rate of increase of this heat loss. We may thus write

Q= '12' df(‘!f - Ti)pfcf (15)
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£ 1 (16)

where the dot over a symbol denotes differentiation with respect to
time t. Another expression for 6 can be obtained by differentiating

Equation (15), taking into account that 'ri is constant for Case (a):?

de (T - T )pgce an

Oe
[ ]
[T

Equating the two expressions for 6, we obtain the following differential

equation defining df as a function of time:

"

£ .13
2 4

£

PgCe (18)

The solution of this equation, for the initial condition df = (0 when
1=0, 1s

4k T
£ (19)

PeCe

Equation (19) gives the penetration distance df as a function of
the time t. Using the relationship to eliminate df in Equations (3),

we obtain the following relationship between dc and T: 1

2
d4°
fkkt pedy
dC —pc or T ik (20)

Two times are of special interest: The time Y at which dc = .75t

(as will be seen later, this is the time at which the seal flexural .\J
stresses reach their maximum value) and the time L} at which dc - t,

From Equation (20) these times are found to be '
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176 (21)
1 pet?

=75 (22)

D. Time-Temperature Relations for Case (b).- In this case the

heat Q lost by the

are given by the left sides of Equatious (8) and (9).

1
Q=3 de(Te - Tydogey

fluid tube and the time-derivative of this heat

Thus

(23)

i S 1 (24)

An alternate expression for Q is obtained by differgntiating Equation (23),

taking into account the fact that ’ri is now time-dependent because of its

dependence on df (see Eq. (10)). The result of the differentiation is

=
.
(=5

£, E)
L] I-E t t
Q= 2p gee(Te =~ TR (o A2 4.2 (25)
_s+_£_g(_£) 42 £
k p ¢\t t
Equating the two expressions for 6, and eliminating Tf - T1 by
means of Equation (12b), we obtain the following differential
equation for df as a function of T:
L . k
_1(_;,,"_1’)?1 Sk DR Pyt
t k t t 2 k [o] c t t
p,c .t
£ f
(26)
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Separating the variables, integrating, and imposing the initial

condition df = t/R when T = 12, we obtain
df/t ke
k. (T -T.) --+x) x dx
£ 2 k ,
2 = k P, ¢ 2 27
Pgcet 1/R RS SN POPUNE S S
k P c

as the relationship between df/t and T valid for times greater

than T, (or df/t greater than 1/R). Introducing y = Rx as a new

dummy variable, we convert E quation (27) to

k(T -1,) Rd :
. 2 - I('-t-g; S\ (28)
pct
vhere
Rdf/t
Rd
x( £ ;s)E J (5 ry)ydy 29
1 S+ 2y + Sy

Making use of gquation (22), we can put Equation (28) into

the more convenient form

2
-‘?i;— [ .25+ I(Rd/t ; 9)] (30)

Equation (30) gives the time T required for the temperature
perturbation in the fluid to penetrate a distance df when df -
is any value greater than t/R. The right side of Equation (29)

is readily integrated, giving the following explicit expressions

for the function I(Rdflt ; S):
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(Pz - 1)/4 when S = 0; (31a)

p—l_2—821 025 + 2p + S
3 2z " 25 + 2

1n(s+1+a/1-s2 Rs_+1-w/1-sz> "

S+1-\1-8° ps+1+y1-s

when 0 < § < 1; (31b)

=
n|a
"
\m/
]
A
+
-
w i
~N
7}

p-1 2-g> /p25+2p+S) !

- 1n i
S 252 \ 28 + 2 i
, 2
8- -1 p-1 ’S -1
& - 52 Arctan(p+l S+1> when § > 1

(31c)

In these expressions p is a short-hand symbol for Rdf/t.

To facilitate the use of Equation (30), Figure 4 gives the

bracketed term of that equation as a function of Rdf/t for selected
values of S. Equation (30), in conjunction with Equations (31) or
Figure 4, enables one to convert the right sides of equations (10)
through (14) into functions of time. Thus, one can determine, for
example, how long it takes for the temperature difference T1 - '1‘c
to reach some specified fraction, say 95Z, of its ultimate value,
T, - Tc ; or what T

f

five minutes.

1 will be after a specified period of time, say

III. STRESS ANALYSIS
We turn now to the stress analysis, which consists of two
parts: First, the determination of the maximum transient bending
moment developed in the 1id and seal after insertion of the package
in the fluid bath. Second, the translation of this bending moment

into flexural stresses in the seal.
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A. Maximum Bending Moment.- We regard the 1id as a thin elastic

plate and make the usual assumption of plate theory: That material
lines normal to the middle surface remain straight and remain normal
to the middle surface.

By our earlier assumptions, the temperature variation through
the thickness of the 1id is the same in all parts of the 1id, and
the edges of the 11d are clamped against rotation by the walls of
the package. Under those circumstances, an argument similar to that
on pp. 49-50 of Reference 3 will show that the 1lid remains flat; that
is, a uniform bending moment is transmitted from the walls to the
1id, through the seal, of sufficient magnitude to suppresss
the spherical chrvature that would be produced by the thickness-
wise temperature variation. We shall now compute this bending
moment for the case dc <t (Fig. 3(a)).

We first assume that, beside the curvature, all middle-surface
strains are also suppressed. Then the stress distribution through
the thickness will be as shown in Figure 5(a), where

Ea(Ti - Tc)

and is positive for compression. We now assume that the constraint

*
against middle-surface expansion is completely removed. This

* The walls of the package may actually provide some constraint
against the middle-surface expansion. The main effect of this, when
the 11d is thin, is to put some horizontal compression into the 1lid
(vhich implies horizontal shear in the seal) without substantially
altering the bending moment from that given by Equation (34).
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corresponds to superimposing a uniform tensile stress 02, as
shown in Figure 5(b), with Oy of sufficient magnitude to cancel

out the resultant thrust due to 01. That 1is,

g. =0 . =< (33)

The final stress distribution is then as shown in Figure 5(c).
Since there is no resultant thrust, this stress distribution
represents a pure couple. The bending moment M per unit width can,
therefore, be computed by taking moments of the Figure 5(a) and (b)

streas distributions about any convenient point. Choosing that

point in the middle surface, we eliminate the moment due to o, and

obtain
' ' d
-_]'_.Ud —t.--ﬁ)
M= lc(z 3
or, with ol replaced by its expression from equation (32),
M= -L EEEE!;:_Zil a |t . SS (34)
2 1-v ¢ \2 3

wvhere, it will be recalled, '1'i - Tc is independent of dc'
Differentiating Equation (34) with respect to d; and setting the

derivative equal to zero, we find that M is a maximum when




dc = _75t. (The same result was obtained in Referenge 22 in the

case of a beam.) With dc replaced by .75t, equation (34) gives the

following expression for the maximum bending moment per unit width

in the regime o < T <X T,:
Ea(T -'I‘)t:2
M o= o 1 ¢ (35)
max 32 1-v

This maximum bending moment occurs at the time T defined by
Equation (21).

There is no need to investigate bending moments for the
Figure 3(b) regime (i.e., for T > 12). In this regime, the temper-
ature gradient through the thickness is always linear and always

legs than it is at T = Tye The bending moment will, therefore, be

less than at T = TZ ;+ and, since T, belongs to both regimes, its

2
bending moment is in turn less than that for T = Tl'

Using Equation (7a) to eliminate T, - Tc in Equation (35), we

i

arrive at the following final form of the Mmax expression:

2
u _ 3 S Ecx('l‘f - Tc) t
max 32 s +1 1 -v

(36)

The sign obtained for Mhax must be interpreted as follows:
A positive Hmax implies compression in the upper fibers of the 1lid
and the outer portions of the lid-wall interface. A negative Mmax

implies tension in those locations.
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Figure 6. - Flexural stresses in a wide seal.




B. Flexural Stresses in the Seal.- We shall now estimate the

flexural stresses produced in the seal by the bending moment of
Equation (36). We shall consider separately the two cases shown

in Figure 2 (ws = w and w << w), the "wide seal"” and "narrow seal”
cases, respectively. The following symbols and sign convention will

be used for the seal stresses.

O, = stress at outer edge of seal, positive for
tension
g, = stress at inner edge of seal, positive for

tension

(1) Wide Seal.- Figure 6 shows the wide seal and the assumedly linear
stress distribution (as in Chapter 1) produced across its width by the
bending moment Mmax' The static equivalence of the stress distribution

and Mmax requires that

2
G, = -6 Mmax/ws 37
2

g
s

=t 6 Mmax/w

or, using Equation (36),

%) __g., s ., BT, -T) .,
o, {T+16 s+1 i-v (&) (38)
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(2) Narrow Seal.- For the narrow seal, we distinguish between two situa-
tions, depending on whether the temperature variation through the
thickness tends to produce an outward or an inward bulging of the 1lid.
In the former case, Mmax is positive and is transmitted from 1id to wall
entirely through the seal, as shown in Figure 7(a). In the latter case,
“max is negative, and we can then expect it to be transmitted from 1id

to wall by means of a concentrated compressive line load along the inner

edge of the wall plus a nearly uniform tensile stress in the seal

‘material (see Fig. 7(b)).

Considerations of static equivalence lead to the following seal

stresses for these two cases:

: - >
M POSITIVE([i.e., a(T, - T)) > o}

.-
OIS IR B! U 39)
o,{" +16 F+1 1ov o (o

M NEGATIVE(i.e., a(T, - T.) < o}

-M
g =0 a———i-a—x—z_l.' s .
o i ews 32 S+ 1 l-v ew

(40)
where e is the dimension shown in Figure 7(b).

(3) Implications of Equations (38) - (40). - Equatioms (38) to (40) show

the parameters which have a significant effect on the stresses in the seal.
They show, in particular, that the seal stress magnitudes can be reduced by
increasing vy and e or by decreasing S, E, |a('1‘f - TC)I, or t. Decreasing

S means decreasing the density - specific heat - thermal conductivity pro-

duct for the fluid or increasing it for the 11d.
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stresses in a narrow seal.



IV. NUMERICAL EXAMPLE

A. Problem.- A package whose temperature has been stabilized at
-65°C 1s immersed in a fluid bath of 150°C temperature. The 1id

properties are:

t = ,015 in
E = 20,000,000 psi
vs=0.3
-6,0
a=5.3x10 "/°C
k = 10 Btu-ft/(hr-ft2-°F) = .00023 Btu—in/(sec-1n2-°F)
¢ = .12 Btu/(1b-°F)

o = .302 1b/in>

The fluid properties are:

k. = .09 Btu-ft/(hr—£t2-°F)
c, = .52 Btu/(1b-°F)
pg = -035 1b/1n°

The seal is narrow, as in Figures 2(b) and 7, with .

v, = .010 in, w= .040 in, and e = .035 in

Determine: (a) The initial interface temperature, (b) the maximum

stresses developed in the seal, (c) the time at which these stresses

occur, and (d) the interface temperature and inside face temperature

five minutes after immersion.




B. Solution.- We first compute R and S, using Equatians (4) and (6):

035 .52 10 035 .52 .09
R \[.302 1z Jo9 T 7Y s'\[aoz 12 0 - -0t

Equation (5) then gives the following solution to part (a) of the

problem:

- _150 (.0671)+ (~65) _
1 1.0671

-51°C

Since this is a narrow seal and a(’rf - Tc) is positive, Equation (39)

must be used to solve part (b). It gives

o
]

9 0671 (20x10%) (5.3x107%) (150 -(-65)] [ .015V?
16 1.0671 1-0.3 (.010

+

= 4 2590 psi

Thus, the outer edge of the seal experiences a maximum transient compressive
stress of 2590 psi, while the inner edge experiences a tensile stress of
the same magnitude.
For part (c) we turn to Equation (21). It gives the follcwing time
at which the stress maximums occur:
(302 1B)(.12 B85 ) (015 1n)?
T, = 2 in 1b- F = 005 sec
1 64 Btu-in :

00023 sec-in’~°F

Equations (22) and (21) give T, = (16/9)'r1 = .89 sec. Thus, at

T = 5 min = 300 sec we are well into the Figure 3(b) regime. This means




that to solve part (d) of the problem, we must use Equation (30).

Solving this equation for the bracketed term, we obtain

11 (300) (.00023)

2

5~ = 8450
pct (.302) (.12) (.015)

[.25 + I(Rdf/t;s)] =

Entering this as the abscissa in Figure 4 and interpolating to find
the ordinate associated with S = .0671 (or, alternatively, using Eq. (31b)

and solving for Rdf/t by trial and error), we obtain Rdf/t = 688, whence

4 .
£ 688
T "7 - 921

and
*
df =921t =1.38 in
Equation (10) may now be used to compute Ti’ As a preliminary useful

step, however we first compute the following quantites:

k
f t 09 1
T g had 1—0 92.1 .0000976
p, ¢, d 2
L2 E- 8 3L ey = 4es

Then Equation (10) gives the interface temperature as

*
This rather large penetration distance could be of the same order
as, or greater than,the length or width of the package. 1In that case the
assumption of one-dimensional heat flow would no longer be valid, and the
remaining ca'culations would have to be viewed with caution.




Tf(.0000976 + 46.5) + 2T

< .

= ,959 (150) + .041 (-65) = 141°C

Simarly, Equation (11) gives the following inside-face temperature:

Tf(—.0000976 + 46.5) + 2Tc(1.0000976)

' = - °
Te ~0000976 + 46.5 + 2 141°¢

Thus, at the end of five minutes the 1id temperature is essentially
uniform (T1 = Tc') but at a temperature that is still 9°C below the
fluid bath temperature. However, as suggested by the last footnote,

the validity of this result may be questionable.

V. FLEXURAL STRESSES PRODUCED IN SCREENING

We shall now apply equations (38) to (40) specifically to the i

thermal-shock screening procedure. The first three steps of this
procedure are as follows:

Step 1 (preconditioning): The package at room temperature is immersed
in the high temperature bath for a minimum of 5 minutes.

Step 2: The package is transferred from the high-temperature to the ]
low-temperature bath and left there for a minimum of 5 minutes.

Step 3: The package is transferred from the low-temperature to the
high-temperature bath and left there for a minimum of 5 minutes.

The remaining steps are a repetition of Steps 2 and 3 for at least
fourteen times.

In using the stress formulas to determine the effects of Step 1, we
We shall

would set Tc equal to Tr (room temperature) and T, equal to T

f 2

assume that the five-minute dwell time is sufficient to make the package

temperature the same as the bath temperature. Therefore, in studying the




effects of Step 2, we would assume 'rc equal to T2 and set Tf equal to

1 and set Tf

1 and TZ' It is clear,

therefore, that Step 1 will produce less severe stresses than Step 3.

Tl. Similarly, for Step 3, we would take Tc equal to T

equal to TZ’ In general, Tr will 1ie between T

Consequently, we need only study the stresses developed in Steps 2 and 3.
The application of Equations (38) to (40) to these two steps of the
screening process is straightforward. The resulting maximum stress
formulas are summarized in Tables 1 and 2. In these Tables, S2 and Sl
are defined by equation (6) with the fluid constants those of the high-

temperature and low-temperature fluid, respectively. TI.e.,

s:p_zc_zig s:p_l.i_l_f..]; (41)
2 "°yp ¢ k ’ 1 °yp ¢ k

Note that EG(TZ - Tl) appears as a factor in all the stress formulas.
l1-v

The significant information in these Tables can be summarized as
follows: In the case of a wide seal (Table 1) the magnitude of the

maximum tension and compression stress are both given by




Step 2:

Transfer from

Tz to Tl

Step 3:

Ea(Tz—Tl) 2

Transfer from [~ <= —)

Tl to T2

l1-v w

Table 1. Wide-Seal Flexural Stresses

Step 2:
S Eu(Tz-Tl) 2 S

Ea(Tz-Tl) 2

W
NI“"

32 t
Transfer from | 37 §+1 1-V ew S+ 1
Tz to Tl

1-v ew
8

Step 3:

Transfer from |- = (—

Tl to Tz

Table 2. Narrow-Seal Flexural Stresses
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where

s $
3 1‘1 and g 31
1 2

N = the larger of (43)

In the case of a narrow seal (Table 2), the maximum tension is

glven by
Ea(T, - T,)
2 1
o - —2 1 .y (46)
BaX, ension 1-v
where

3 2
31
N' = the larger of 32 S. +1 ew
1 s
S 2
9 2 t
and = s2 2 ( ;; ) (45)

The magnitude (absolute value) of the maximum compressive stress 1is

s TR
compression 2 Ys

It is very likely that any damage to the seal arises from the tension
stress, rather than the compressive stress (which in any case never
exceeds the maximum tension stress)., <lherefore, Equations (42) and

(44) are the results of greatest interest.
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V1. APPLICATION TO PACKAGE OR SCREEN DESIGN

The usefulness of these results to the package designer can be
stated as follows: Knowing the screening bath parameters
(TZ' Tl, 82, Sl), the designer can design the package so that the
Opax given by Equation (42) or (44) (whichever applies) is less
than some conservatively assumed allowable tensile stress for the
seal material. On the other hand, the purchaser of an already
designed package can use the same formulas to select screening
parameters that will produce a omax equal to some selected minimum
acceptable tensile-strength value for the seal material, thereby
rupturing those seals whose strength is below that value. It should
be noted, however, that other screening techniques (e.g., external
pressure, as discussed in Chapter 1) may be more effective for the

latter purpose.
VII. INCLUSION OF BOILING

In Section II (THERMAL ANALYSIS) it was tacitly assumed that no
boiling of the low-temperature liquid occurs when the package 1is
transferred into it from the high-temperature fluid. Thus, the
thermal analysis presented there is valid if the computed interface
temperature 'I'i turns out to be lower than the boiling temperature
Ty

Tb’ a generalized thermal analysis is needed which takes into account

the heat of vaporization of the low-temperature liquid.

of the low-temperature liquid. If Ti turns out to be higher than




Here we present the starting point of such an analysis with the
aid of Figure 8, which is Figure 3(a) generalized to include a vapor
phase of depth dv adjacent to the cover. Also, Figure 8 has been
drawn consistent with the fact that boiling can occur only for the

case Tc > Tf. The following new symbols will be needed. They are:

Tb = known boiling temperature of low~temperature liquid
dv = thickness of vapor layer produced by boiling of the low-
temperature liquid.

Cey ™ heat of vaporization of low-temperature liquid

kv = thermal conductivity

of the vapor at

¢y < specific heat atmospheric pressure

Py ™ density

Implied by Figure 8 is the assumption that in the vapor layer the

temperature varies linearly from the value T, at the interface with

i
the cover to the boiling temperature Tb at the interface with the
liquid. In the liquid, the temperature varies linearly from Tb to

the unperturbed liquid temperature T_ in a penetration distance d

f

measured from the vapor-liquid interface.

£

In place of Equation (1), we now have the following energy
balance equation, which states that the cover heat loss represented
by triangle AGH is equal to the sum of (a) the heat that was required
to heat the liquid that is now vapor to its boiling point, (b) the
heat of vaporization of that mass of liquid, (c) the heat gain of
the vapor represented by triangle ABF, due to its mean temperature
rise above the boiling point, and (d) the heat gain of the unboiled

11quid, represented by triangle BCD:
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Figure 8.- Temperature distribution in low-temperature fluid and 1lid for
the case in which boiling occurs and the temperature pertur-
bation has not yet penetrated through the 1lid (dc < t).
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1
2 4P (T Te = dpo, (Ty-Teleg

+
dvpvcfv

1
+ 3 dvpv (Ti-Tb)cv

1
+-§ dfpf (Tb_Tf)cf (47)

There are now two interfaces: cover-vapor and vapor-liquid; therefore

there are now two equations corresponding to Equation (2). They are

T -T T,-T
i
St - L b (48)
(o4 v
Ti-TB Tb-Tf
o YR R (49)

Equations (47), (48) and (49) can be regarded as three equations

defining Ti’ dv and d, as functions of the time-like parameter dc'

f

They are valid only for the phase dc< t of the heat transfer process

i.>Tb'

To solve Equations (47), (48) and (49) most expeditiously,

and only if their solution gives T

we first solve (48) and (49) for dv and 4, in terms of dc, then subs-

f

titute the results into (47), cancel the common factor dc’ and thereby

obtain a quadratic equation for T, in which T, is the only unknown.

i i

The outcome of these steps is:




N

2
Tci (I-Kv) + Tci (beva + kva + chxv)

1 2 1 2
- (bechKVE + chxva + 2 ch Kv +'§ be Kf) 0 (52)

in which the following notation has been employed:

T, , =T -T

b bE b £ (53, 54, 55)

Ty =T -1y Tp =T~ T

Kv - kvpvcv/kpc

va = kvpvcf/kpc
(56)

K

viv - kvpvcfv/kpc

Kf - kfpfcf/koc 1

In using these results, the quadratic equation (52) is first solved

for Tci’ after which (53) gives T, and (50) and (51) give dv and d

i f

for any dcf
VIII. REMARKS

Simple formulas have been developed for the maximum flexural

stresses produced in the lid-to-wall seal of a microelectronic

flatpack under conditions of thermal-shock screening. In the derivation
of these formulas, attention has been restricted to the case of a
constant-thickness 1id. If the 1id is of a ductile material with a
thinned edge, the thinness of the edge and the plasticity of the
material will very likely provide an effective barrier against the

transmigssion of damaging bending moments across the lid-to-wall seal,

as discussed in Chapter 1.
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The formulas are based on a number of other simplifying assump-
tions, one of them being the assumption of temperature-independence
for the thermal and elastic properties of the materials involved. It
is known, however, that the properties of the package 1id and the
screening fluids are to some extent temperature-dependent, and that in
the screening process marked temperature variations (both spatial
and temporal) may occur. Consequently, the user of the formulas must
exercise some judgment in estimating appropriate average values for
the material constants appearing in them, based on the anticipated
ranges of temperature variation over the time period of interest.
Since the computed temperature variations themselves depend on the
assumed values of the materjial thermal constants, an iterative

calculation may be required in extreme cases.
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Chapter 7 - THERMAL SHOCK: BIAXTAL SURFACE TENSION IN DIP SEALS

If a solid object at a uniform high temperature Tc is plunged into a
liquid bath of lower temperature Tf, then, according to Equation (7a) of
Chapter 6, the surface of the solid will immediately experience a tem-

perature drop of

AT = Tc -T (T -T,)

S
1 T 54 T - Tg (1)

where

pfcfkf/ock (2)

with Pes Co» kf the properties of liquid and p, ¢, k the local pro-
perties of the surface material of the solid” Thus, at the instant of
immersion, there develops an infinitely thin surface layer of cooled
material in the solid. Despite its cooling, there can be no thermal
contraction of this surface layer, because the bulk of the solid, with a
volume that is infinite in comparison with that of the surface layer, is
still at its original temperature TC. The suppressed contraction will
give rise to biaxial surface tensions. If these are sufficiently large,
and the surface material brittle, fracture of the surface material can

occur.

*In using Equation 7(a) of Chapter 6, we are assuming that the liquid
is not brought to its boiling temperature T, ; that is, that the interface
temperature Ty = T. - AT implied by Equation (1) does not exceed Tp. If
Equation (1) yields a T4 that does exceed Ty, Equation (52) of Chapter 6
may be used to compute a more correct Ty. Alternatively, if one wishes
to be conservative, one may simply assume Ty = Tp. The corresponding
surface temperature drop AT = T, - T, will be too large, causing
Equation (4) to predict a surface tension ¢ that is also ton large.




I. EVALUATION OF SURFACE TENSION

Inasmuch as the stress in the third direction (normal to the surface)
is zero, the magnitude o of the biaxial surface tension at any location
can be obtained from the biaxial stress-strain relations for plane stress,

namely

E
o 3 (ex + v€y) a

1-v A W y *+ved )

where E and v are the local Young's modulus and Poisson's ratio. The sur-
face tension o will be the common value of Oy and °y required to produce
the strains € = Ey = aAT, where a is the local coefficient of thermal
expansion of the surface material. Thus,

EaAT
1-v

o= Ez (1+v)aAT =
1-v

(4

Bquation (4) will give the tensile stresses produced at any location
in the exposed surface. If applied to the seal area of a glass-sealed
dual-in~line package (DIP) or other kind of package, in particular, it can
reveal whether or not damaging surface tensile stresses are likely to be
produced in the glass seal during the high-to-~low temperature step of the
MIL~STD-883B thermal shock test or during any similar experience*. 1In
making this judgment it should be kept in mwind that the surface tension
can be exacerbated by stress concentrations due to lead frames and lead

wires.

We are assuming here that the components of the package are '"ther-
mally matched", so that the seal stresses under the high initial uniform
temperature are negligible. If that is not the case, and there are some
stresses under the initial temperature, then Equation (4) gives the changes
in stress produced by immersion of the package into the low-temperature
fluid.
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II. APPLICATIONS

In order to demonstrate the above-mentioned use of Equation (4),
let us assume that a glass-sealed ceramic dual-in-line package (CERDIP)
has been brought to a uniform temperature of 260C in a lead-tinning
operation, then, for purposes of slag removal, rapidly quenched in water
at room temperature (20C), and let us compute the resulting surface ten-~
sion in the exposed glass of the seal, assuming the surface to have been

stress-free at the 260C uniform temperature.

The properties of the water are taken as

3
pe =1 g/cm

ce = 1 cal/g°C

2

kf = 4.1 Btu-in./hr-ft“-°F

and those of the sealing glass are estimated to be

p = 6.85 g/cm3
¢ = .02 cal/g°C
k = 6.3 Btu-in/hr-ft2-°F
E=09.5x 10° 1b/1n?
v = 0,22
a = 64x 10°7/°C
Then
1 1 4.1
S= 685 026 2.18
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whence

2.18

AT = 318 + 1

(260 - 20) = 165 C ®

T, =T - AT = 260 - 165 = 95 C
i c

o = 9.5 x 10% (64 x 1077) (165)
1-0.22

= 12,900 psi

Thus a rather large surface tension of 12,900 psi is predicted. The
strength properties of this glass are unknown, but if they are comparable
to those cited in Section VIII of Chapter 1, we should expect fracture of
the seal to occur in around 96X of the packages subjected to the assumed
quench.

In an experimental simulation of the event assumed in this example,
two CERDIPS were heated to 260 C in molten solder, then dipped in 20 C
water. Subsequent measurement of their 1id torque strength (torque required
to remove the 1lid, applied coplanar with the 1id) gave values of 20 in.-1b
and 0 in.-1b, as compared with 1id torque strengths of 50 in.~1lb obtained
for two virgin packages, thus confirming the damage predicted above. Two
packages that were quenched in crank-case oil (properties unknown), instead
of in water, had subsequent 1id torque strengths of 60 in.-1b and 50 in.-1b;
that is, their seals suffered no damage.

It should be mentioned that during the water quench a very short dura-
tion sizzling was heard, indicating that the actual interface temperature
was at or slightly above the boiling temperature of 100 C. Thus, the above-
computed interface temperature of 95 C is slightly low, therefore slightly

conservative. Taking 100 C as the more nearly correct interface tempera-
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ture, we would get a AT of 260 - 100 = 160 C instead of 165 C, leading to
a surface tension some 3% lower than the 12,900 psi computed above.

As a second example, let ys consider the same CERDIP as in the pre-
vious calculation and compute the seal surface tension it experiences
during the level C thermal shock test of MIL-STD-883B. This involves
heating the package in a 150 € liquid bath and then immersing it in -65 C
liquid bath. (The temperature difference of the two baths is 215 C, which
is only 10% less than the 240 C temperature difference in the previous
example.) The low-temperature fluid will be assumed to be FC77 as suggested

in MIL-STD-883B. Its pertiment properties as taken from Appendix A, are

= 1.84 g/cm3

Pg
ce = +237 cal/g°C
kf = .65 Milliwats/cm-°C

451 Btu-in/hr-ft2—°F

(These values are for a temperature of 0° C, which is about the middle of

the anticipated temperature rise of the FC77 in immediate contact with the

package. A somewhat lower temperature would have been appropriate, inas-
much as the rest of the temperature-perturbed fluid experiences smaller
temperature rises; however kf data are not given for temperatures below
0° C.)

The calculations for this example are as follows:

1.84 .237 .451
s jC;ss 02 6.3 - 477
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e

477

7+ 1 {150 - (-65)] = 69.4 C

AT =

T, =T - AT = 150 -~ 69.4 = 80.6
1 c

Bx

o = £9.5 x 10%) (64 x 1077) (69.4)

1-0.22 = 5400 psi

We note that even though the bath temperature difference in this example
is alwmost the same as that in the previous example, the 5400 psi seal
surface tension produced is less than half as severe as the stress of
12,900 psi obtained in the previous example. The large difference is due,
of course, to the use of FC77, rather than water, as the low-temperature
fluid. Again assuming the glass to have strength properties comparable
to those cited in Section VIII of Chapter 1, we would expect seal damage
in about 6.7% of the packages subjected to this screen, as compared with
961 damage for the previous treatment.

This and the previous example, taken together, show that the severity
of a thermal shock test should not be measured solely by the temperatute
diffecence of the two baths involved in the test. The properties of the
fluids, especially those of the low temperature fluid, play a very important

role, as well.
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Chapter 8 - THERMAL SHOCK: ANNULAR GLASS SEALS*

Where a Kovar lead of circular cross section emerges from a Kovar
package it is commonly sealed by an annular glass bead. Figure 1 shows
a typical package containing such seals around lead wires emerging through
the base; in other packages the lead wires might emerge through the side
walls.

In the design of such packages the glass selected is usually one whose
thermal contraction from the set point down to room temperature matches
the thermal contraction of the Kovar over the same temperature range, so
that at room temperature the seal is free of thermal stress.

However, the glass and Kovar, though matched over that temperature range,
would generally not be matched for another temperature range. Therefore,
if the package is brought frcm rocm temperature to another uniform tem~
perature thermal stresses will develop in the glass seals and the metal
surrounding them. Thermal stresses will also develop as a result of any

non-uniformity in temperature within the glass seal or between the glass and

the metals, whether or not the seals are matched. Severe (though transient)
non~uniformities of temperature can arise during the MIL-5:D-883B thermal
shock tests immediately after the package is transferred into another

bath after its 5-minute dwell in one bath, the reason for the nonuniformities
being the different thermal conductivities, specific heats and densities

of the glass and metal. The assoclated thermal stresses in the seal could
conceivably result in a loss of hermeticity. For example, a sufficiently
large radial tensile stress at a glass-metal interface could cause a gap

to develop at that interface if the stress exceeded the tensile strength

of the interface material, leading to the ingestion of the thermal shock

*This chapter supcrsedes the analytic portions (Appendixes A through
C) of Ref. 26.
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Figure 1.~ Package with annular glass lead-through seals.
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test fluid into the package. To make matters worse, lnasmuch as the

temperature gradients are transient, the existence of the gap might also
be transient and therefore undetectable once the temperature has become

uniform again. Sufficiently large circumferential tension in the glass

could also cause radial cracks to develop.

The capability of the thermal shock test to produce loss of hermeticity
and ingestion of contaminants was first pointed out by R.W. Thomas
(Reference 24). Thomas conducted an experimental study of packages subjected
to thermal shock and found that leakage appeared to be directly correlated
with the thermal shock. He suggested that thermal stresses in the vicinity
of the lead-through seals may be large enough to permit leakage during
the thermal shock which might go undetected during subsequent gross leak
testing of the package. Other literature (Reference 25) also indicates
that stresses during thermal shock testing can lead to fracture of the glass
seal.

In view of these findings it appears desirable to have a procedure for
predicting or estimating the magnitudes of the thermal stresses that might
develop in the annular glass lead-through seals of microcircuit packages
when subjected to thermal shock testing. The predicted stress conditions
can be used by the screener of the package to select a thermal shock test
level consistent with the level of stress desired in the test package. A
thermal shock stress analysis capability would also help the package
designer arrive at a seal that would remain hermetic during any anticipated

thermal shock testing of the package.
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The purpose of this chapter is to develop a stress analysis procedure

of the kind just referred to, based on some simplifying assumptions and
idealized modelling. The point of view i3 essentially that of Reference 26,
except for two differences: The finite difference method, rather than the
finite element method, is used for the temperature analysis, because it
appears to be more accurate; and in the stress analysis, plane stress is
assumed, rather than generalized plane strain, because it 1s simpler and
there 1s no strong reason to believe it is less valid.
The stress analysis procedure to be described below consists of two 1

parts: the temperature analysis, and the stress analysis proper, both of

which are embodied in a single APL computer program that prints out changes
of temperature and stress in the glass as functions of radial position and
time during any phase of the thermal shock test. In an illustrative
application of the computer program, the history of radial stress at the
glass-lead interface in a specific package during a specific thermal shock

test is tracked.
I. MODELLING

Apart from the annular glass seals, the package is assumed to be an
all-metal package consisting of N identical leads and a base, 1id and R
gide-walls of the same material as the leads. (For simplicity, the base,
11d and side-walls collectively will be referred to henceforth as the
"base".) Ceramic and other componenté inside the package will be ignored,
although, if desired, they can be accounted for by adding an equivalent

(in the sense of total heat capacity) amount of metal to the base. N
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As noted above, whenever the term 'base" is used it should be under-
stood to mean the actual base, 1id and side-~walls taken together as a single

entity. The total volume of this base will be denoted by V. and that part

b
of its surface area in contact with the thermal shock test fluid by Ab.

Additional notation will be intruvduced as needed.

A. Modelling for Temperature Analysis.- Different models will be

used for the temperature analysis and for the stress analysis proper. The

model for temperature analysis is shown in Figure 2. It consists of a

single lead of volume VE’ radius a, surface area Ao in contact with the
thermal shock test fluid, surface area Az in contact with the glass seal,

an annular glass seal of inner radius a and outer radius b, and, surrounding
the glass, a proportionate share Vb/N of the total base volume. The

surface area of that proportionate share of base that i{s in contact with

the test fluid is Ab/N.

Inasmuch as the metal has a migh higher thermal conductivity than the
glass, heat conduction in the lead and in the base will be assumed to be
instantaneous; that is, the temperature is assumed to be uniform through-
out the lead and uniform throughout the base. These two uniform tempera-
tures are allowed to be different and, of course, to vary with time.

Inasmuch as the surface area of glass exposed to the fluid will
usually be much smaller than the surface area of the glass in contact with
the metal (i.e., lead-glass interface area plus the glass-base interface
area), any direct transfer of heat between the fluid and the glass will be
neglected. All of the heat transfer.to or from the glass will be assumed
to occur through the two interface areas that it shares with the metal.

Continuity of temperature between metal and glass is assumed at these inter-

faces.
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Those surfaces of the lead, base and glass that are inside the package
are assumed to be adiabatic; that is, there is no transfer of heat across
those surfaces.

In view of the above assumptions, the temperature T in the glass will
be a function only of the radial coordinate r and time t; that is T =T(r,1).
The temperature will not vary in the axial (i.e., parallel to the lead)
direction.

The flow of heat between the fluid and the metal surfaces in contact
with it is assumed to be governed by a heat transfer coefficient h that is
the same for the fluid-lead interface as for the fluid-base interface.
This heat transfer coefficient is best determined experimentally by the

method described in Reference 26. In that reference the value of

4

h = 210 Btu/ftz-hr—°F = 4.051 x 10 Btu/in?-sec—°F is cited for the case

in which the fluid is water and the package is Kovar.

The density, specific heat and thermal conductivity of the glass are
denoted by p _, cg and kg, respectively, and assumed to be constant. Inas-
much as these properties are to some extent temperature dependent, average
values based on anticipated temperature ranges should be used for them.
Similarly, the density and specific heat of the metal will be denoted by
Pk and N (subscript k standing for Kovar, although the analysis is not
restricted to that metal), respectively, and also assumed to be constant.

The thermal conductivity of the metal will play no role in the analysis,

in view of the assumption of uniform temperature throughout the base and

throughout the lead.




Certain combinations of the parameters defined above will arise
naturally in the course of the temperature analysis. We introduce them
now along with the short-hand symbols A, B, C, D and ag that will be used

to represent them:

_hra )
A= Ak B = p.cA a
27g 882
(1)
c = 2 5 = K%'
alng pgchINa
a8 = thermal diffusivity of the glass = kg/pgcg (2)

B. Modelling for Stress Analysis.- The modelling of the lead-glass-

base unit for purposes of stress anaiysis is shown in Figure 3. It will
be seen from the model that for stress analysis purposes only that portion
of the lead clinched by the glass is assumed to be effective; also that
the metal surrounding the glass is assumed to be representable by a metal
annulus of radius c with stress-free outer boundary. Some judgment will
have to be exercised in selecting an appropriate value for c. For the
case in which the lead comes through the side-wall of the package, it is
suggested that c be taken equal to half the height of the wall. When the
lead protrudes through the bottom of the package, as in Figure 1, it is
suggested that ¢ be taken as the distance from the center of the lead to

the nearest edge of the package. (For c¢ sufficiently large the stresses

in the glass will become relatively insensitive to its value.)

Y
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Figure 3.- Modelling for the stress analysis.

-200-~

t (PLANE STRE.




A state of plane stress w111>be assumed in the glass,in which the
glass normal stresses (ar in the radial direction and o, in the transverse
direction, both positive for tension) are functions of the radial coordinate
r and independent of the axial (parallel to the lead) coordinate. These

stresses will also vary with time by virtue of the fact that the tempera-

tures and temperature distributions vary with time.

The Young's modulus, Poisson's ratio and thermal expansion coefficient
of the glass will be denoted by Eg’ vg and ag, respectively; those of the
k* Yk and a - Inasmuch as they may be temperature dependent 1

(especially the a's), average values based on anticipated temperature ranges

metal by E

should be used for these constants.

II. TEMPERATURE ANALYSIS ]

A. Basic Equations.- The initial uniform temperature of the package

prior to 1ts immersion in the fluid will be denoted to TO, that of the
fluid by T_. The fluid bath is assumed to be sufficiently large so that
its temperature is not affected by the immersion of the package; therefore
T, 18 also the ;niform temperature that the package approaches asymptotically
if left in the fluid for a long enough time.

The temperature 1(r,t) in the glass is governed by the following

equations:

2
3T 1 3T
3T ag (arZ + r ar) (a <r<b) (3)
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e

' hA
] L 3T - 0 - aT.
°k% 3, (ar)r_a A, (To - (M) + kg(ar)r_a @)
v -
b 3T ha, aT
p, ¢, — (=) = — [T - (T) 1 -k (37) (5)
k 'k AlN T c=b AlN ™ r=b g ar =b

The first of these is the familiar field equation for non-steady state
heat conduction. The second equation is a statement that the rate of !

heat storage in the lead is equal to the rate of heat flow into the lead

through the fluid~lead interface plus the rate of heat flow into the lead

through the glass-~lead interface. And the third equation is an analogous

statement for the base.
Rearranging terms, and introducing a dimensionless radial coordinate
X, 8 dimensionless time y, and a dimensionless temperature t, defined as

follows:

x £ rfa (6)
y = tag/a2 = Tkglpgcga2 Q)]

Tcn - T(rsr) *
t = —f:_—.r—o-— z t(x,y) (8)

we can convert Equations (3), (4) and (5) to the following dimensionless

form:

at
3x

[-%)
-

ot

y 2

(1 <x <b/a) %

+
® =




It ot
) = At(l,y) + B(z>) (10)
3x x=1 3y x=1
. at ' 3t !
' - (D) = Ct(b/a,y) + D() (11) i
X ywb/a 3" x=b/a :

in which the notation of Equations (1) has also been employed. These i

equations are to be solved subject to the initial condition

t(x,0) = 1 (12) i

B. Finite-Difference Formulation.-~ We will express Equations (9)-(11)

in finite-difference form, using the grid shown in Figure 4. In this grid,

ol

L the labels i = 1,2,...,M~1,M identify equally spaced stations in the radial
or x-direction, with stations { =2 and M -1 being at the lead-glass and
glass-base interfaces (x -1, x =b/a), stations 1 =3,4,...,M-2 lying entirely
within the glass, and stations 1 =1 and 1 =M being "phantom" stations
lying outside the glass. The labels n=1,2,3,... identify equally spaced
stations along the time or y-axis, with n =1 corresponding to y =0. The
ordered number pair (i,n) will identify the grid point at station i in the
x-direction and station n in the y-direction, and ti,n will stand for the
value of t at this grid point. Ax and Ay will denote the grid-line spacing
in the x and y directions, respectively.

Our objective in this section is to determine all the ti,n for the i,n
combinations defined by 1 =2,3,...,M-1 and n=2,3,4,... . To that end we

shall employ the following finite-difference approximations for the

derivatives of t at the grid point (i,n):
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Figure 4.~ Finite~difference grid for temperature analysis.
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a _ 1,0 el (1%
3y dy

de . lttn i (14)
ax 24x

32t . t1+11n -2 Eilp + ti—lln (15)
ax? R

Writing Equations (10), (9) and (11) at the grid points where each applies,
substituting the above expressions for the derivatives, and making minor
rearrangements of terms, we obtain the following finite difference forms

of Equations (10), (9) and (11), respectively:

tyaf Y80ty F ey (10")

~ti-l,nai + ti,nJ - ti+1,nKi = ti,n-le CAp

~tM—Z,nQ + tm—l,nP + tM,nQ - tM—-l,n-l (11"
where

F-?’;{—x G-1+5%Y- (16)

ui-—x—zﬁ‘i J-2—:f+Ax Ki-%+2—’¥; an

Q,z_gyA_x. p.1+£31 | (18)

in which X denotes the value of x at radial station i. Equations (10')
and (11') are to be written for n = 2,3,4,... ; Equation (9') for
1=2,3,...,M~1 and n = 2,3,4,... . These equations must be supplemented

by the initial conditions
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ti,l =0 (1 =2,3,...,M-1) (19)

coming from Equations (12).

C. Solution of the Finite-Difference Equations.- For any fixed n,

Equations (10'), (9') and (11') constitute a tri-diagonal system that can
be solved expeditiously by the method of Reference 27, which leads to a
solution in the form of a recursion formula. The method of Reference 27,

as applied to the present system, is as follows: Postulate

t = q + B (20)
n

1,8 " %4, i,nt1+1,n

where G and Bi q are as yet undetermined functions of i and n; and,
» ?

with 1 replaced by 1-1, substitute this into the first term of Equation (9')

to get

JH, +¢t, J Ax

=y g n BB T T Tt e T B ne

or, solving for t

i,n’
. - (i;,n—l’“ + “1—1,n“1) . ( K ) . QD
i,n J-Bi_l'nHi J-Bi-l,nﬂi i+l,n

Comparing Equations (21) and (20), we get the following recursion formulas

for ui,n and Bi,n:
. . Filn_le + ai-l,nHi (22)
i,n J-Bi-lui
K
1
8 - (23)
i,n J Bi-l,nﬂi
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Provided that the ti n-1 are known, these equations can be used to compute
?

ai,n and Bi,n once ai-l,n

and Bl a are known, all the succeeding a
H]

and Bi-l,n have been determined. Thus, if al,n

i,n and Bi,n can be obtained by

successive application of (22) and (23). The determination of @ 4 and 81 n

proceeds as follows: From (9') and the i =2 equation of (10'), we have

tl,nF + t2,nG - t3,nF = t2,n—l (24)
- tl,nHZ + tZ,nJ - :3,n1(2 =ty n-18% (25)
Now solve (25) for ty oo use the result to eliminate 3 n in (24) and
solve the resulting equation for tl n to get
t, = f2,n-1%; - FoX) N % t (26)
i,n F(K + H ) F(K + H ) 2,n
and comparing this with Equation (20}, we infer that
. . tZJn—l(KZ - FAx) 27
i,n F(K2 + HZ)
FJ - Gl(2
8 : (28)
1,n F(K2 + Bz)

Thus, we have the starting equations needed for the recursive application

of Equations (22) and (23), provided that the ti n-1 2Tt known. When n = 2,
the t are indeed known, for then
i,n-1
t =t =0 (29)

i,n-1 i,1




by virtue of Equation (15). Therefore, at least for n =2 we can determine

the following a's and B8's:

3,n; oo aM—l,n

Ba,nd B3nd o0i Bugg

and for that same n, by successive application of Equation (20) we can deter-

mine successively tM—l,n’ tM—Z n’ "t c2,n’ and t 0’ 1f ¢t is known.

i,n M,n

A formula for tM n will now be derived: Write Equation (20) for i = M-l
’

and 1 = M-2 to get

*M-1,n = “M-1,0 7 BM-1,n"M,n (30)

Ty2,n ™ %-2,0 ¥ BM-2,0%1,n G

Use Equation (30) to eliminate t:M_1 n in (31) to convert the latter equa-
14

tion to the form

S-2,0 =Y Sty (32)

where

Y= aM—Z,n + BM-Z,nuM-l,n

(33)

§ =8

M—2,nB

M-1,n

Substitute (30) and (32) into Equation (11'), which has not as yet been

used, and solve the reéulting equation for tM n to get
»
. ST Q- Pay g (38
M,n Q + PSM—I,n - Qs
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The procedure for computing the t1 n can now be summarized as follows:

Step 1: Taking cognizance of Equations (19), set n =2 and use Equations (27)

and (28) to compute % and 81 0’ then (22) and (23) to compute successively
’ ’

°2,n and B and B3,n; ves and BM-l,n' Equations (33) will

Z,n; aB,n ; OLM-l,n

then give y and §, and Equation (34) t, , after which Equation (20) with i

M,n

successively equated to M-1, M-2, ..., 2, 1 will give tM—l,n; tM—Z,n; el

t s t ~- all for n = 2. At this point all the t
2,n 1,n

gridline are known, including the t

,n along the n = 2

i,n at the phantom grid points (1,2) and
(M,2). Step 2: Set n = 3 and repeat all of the foregoing calculations
with the following difference: Whenever a value of ti,n-l is needed, take
it from the results of Step 1, rather than from Equations (19). Step 3: Set
n=4,5... successively, and for each n repeat the calculations in Step 1,
using the results obtained for the preceding n whenever a value of ti,n—l
is needed.

Fairly straightforward numerical experimentation can be used to
determine the optimum grid-line spacings Ax and Ay -- optimum in the sense

that they are sufficiently small to give accurate results, but not so

small as to require excessive calculations.
ITII. STRESS ANALYSIS

In this section we analyze the plane stress model of Figure 3 for the

o, and o, stresses produced at any time T in the lead, the glass, and the

t
base annulus by any given temperature distribution T(r,t) in the glass, the

spatially constant temperature T(a,t) in the lead, and the spatially constant
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temperature T(b,7) in the base, assuming the system to have been stress-free
at the uniform temperature To. If the system was not stress-free at the
uniform temperature To’ then the computed at and 9, will represent the
changes of stress occurring as a result of the change in temperature from
the uniform value To to the distributions described above.

It will be convenient to introduce the following short-hand notation:

8{r,7) = T(r,1) - T0 «(35)

Also, u(r,1) will denote the radial displacements, er(r,r) and et(r,r) the
radial and transverse strains. The corresponding normal stresses or(r,r)

and ot(r,r) have already been introduced and illustrated in Figure 3. E,

v and a, without subscripts, will be the general symbols for Young's modulus,
Poisson's ratio and thermal expansion coefficient for any of the three
components of the model shown in Figure 3. When dealing specifically with
the glass we shall add the subscript g to these symbols, and when dealing
with the lead or base the subscript k. The spatially constant values of &

in the lead and in the base will be denoted by 8a and Bb, respectively;

that is,

ea = 9(a,t) = T(a,T) - To
‘ (36)

6, = 9(b,t) = T(b,1) - To

b

A. Basic Equations.- For each component of the Figure 3 model we

have the following set of basic equations governing the distribution of

g g
r’

¢’ er, et and u at any time t:




t
(38)
1
ft - af E (ot - vor)
. -
r r
(39)
-3
e T T

Equation (37) is the equation of equilibrium for the element shown on the
right side of Figure 3, Equations (38) are the stress-strain-temperature
relations for an isotropic material in plane stress, and (39) are the

strain-displacement relations. These equations can be combined to yield

a differential equation for u(r,t) alone. It is

1
3u+_@___u_=(1+v)a% (40)

r r

For the lead, in which 6 is spatially constant at the value ea,

390/3r = 0, and u must be regular as r -0, Equation (40) then has the solution

r
u= (1 +“k)ukea 3 + Blr (41)

where Bl is an as-~yet-undetermined integration constant. These displace-
ments substituted into (39) will give the strains, and those strains
substituted into the inverted form of Equations (38) will give the stresses.

The result for o, in particular is

Ek 1 '\
g, = T——\;; [Bl -3 ukea (l-vk)] (42) .




The displacement and radial stress in the lead at the lead-glass interface

(r =a) are therefore

a
u(a,t) = (1 4-\)k)a;k6a 7 + Bla 43)

o e AR 2 o o e+

1
or(a.r) - T, [Bl -7 %% 1 —vk)] (44)

For the base annulus, in which 6 is spatially constant at the value

eb, 98/3r 1s again zero, and Equation (40) has the solution
T DZ
us= (1 +vk)ukeb 3 + Dlr + - (45)
where D1 and D2 are integration éonstants. This leads to
1-v, 2 D,
o= 5 |~ 3 akeb + (1+\:k)Dl - (l-vk) ) (46)
1-v r
k
The boundary condition o= 0 at r = ¢ gives
c2 1—\:k2
D2 = 1_—\)k (l+\)k)Dl -3 akeb (47)

With Equation (47) used to eliminate D, in (45) and (46), those equations

2
yield the following displacement and radial stress at the glass-base

interface (r =b):

1+\ak b2 _.2 c2(1+vk)
u(b,t) = a8 € +Db | 1+—— (48)
2 kb b 1 2
b (l-vk)
2\/p a,
. < 1 kb
0, (b,0) = E (1 - 2) kl"’ D > (49)
b k
A\‘
’212“ i |
[ ]
L]
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Finally, in the glass, Equation (40) has the solution

or'dr' + C.r + = (50)

u=- 1

r
(1+v )a [ C2
r

where C1 and C2 are integration constants, r' is a dummy variable repre-

senting r, and 8 = 8(r',7). These displacements lead to the following

stresses:
- r
a C C
o, = Eg - ——% I or'dr' + l~\l) - z 5 (51)
L r a g (l+vg)r
— 4
a C C
ot =g - a 68(r,T) +-§ I or'dr' + 1_\1) + 2 7 (52)
g g r a g (1+vg)r

where, in any integrand, 6 = 6(r',t). At the interfaces r=a and r =b

in particular, Equations (50) and (51) give the following displacements

and radial stresses:

<,
u(a,t) = Cja +— (53)
(1+v )a b C2
u(b,t) = —g-——s- I er'dr' + Clb + =Y (54)
a
Cc C
1 2
c (a,1) = E - (55)
r 8 [1—\:3 (1+v8)a2
b
a C Cc
o (b,7) = Eg[-—% f ér'dr' + l_t - 2 3 (56)
b a g (1+v8)b
~213-
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Thus, the stresses and displacements in all three components of the
model in Figure 3 have been determined to within four constants: Bl, Cl’
C2 and Dl’ These constants can be evaluated in a straightforward way from
four continuity conditions: Continuity of radial displacement u and of
radial stress o at each of the two interfaces, r=a and r =b. These
four continuity conditions will lead to four simultaneous equations that
can be solved for Bl, Cl’ 02 and Dl' The four equations are omitted here
for the sake of brevity; they will be presented later in a dimensionless

form.

B. Glass Stress Equations in Dimensionless Form.- We note that

8= (T, - T ) (1 -t) (57

wvhere t is the dimensionless temperature parameter defined earlier
(Equation (8)). Substituting this expression for 8 into Equations (51)
and (52) and dividing through by appropriate constants, we can convert

these equations to the form

s - WGy, %
r s 2 I-v 2 (58)
k x g (1+vg)x
a C c
s, =E|le-1+ Wix,y) |, L _ 2 (59)
t a 2 1-v 2
k x g (1-v )x
-4
where
o o
§ T oL~ § = ——Ff_ (60)

r (TQ-TO)Egak t ~ (Tw-To)Eguk
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are dimensionless measures of Ur and o_3

t p
c c
= 1 = 2
C, = 7w c, £ —m—mm—p (61)
1 (Tw To)ak 2 (TD-To)aka2

are dimensionless measures of C, and CZ; x and y are the dimensionless

1
radial and time coordinates defined by Equations (6) and (7); and

x
W(x,y) = I [1 - t(x',y)])x"dx’ (62)
1

with x' a dummy variable representing x, and t henceforth regarded as a

function of x and y; t.e., t = t(x,y).

i

The four simultaneous equations referred to earlier, which are to be
solved for the four integration constants, can also be put into dimensionless

form, with the following result:

c c D, E
- et (e -1
g (1+vg)(b/a) k g
E la w(b/a,y)
=2 Elem? - na-y + T (63)
g ak(b/a)
c c B, E 1-t
1\1)'1+3'11_k"5k‘ : (64)
- ~-v, E E 2
4 k g g
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¢ 2 14v
g, + 22-51(1+—°-5—1:—5>
(b/a) b TV

2 a_(14+v )W(b/a,y)
-% (14+v,) (tb-l)(c—z - 1) - B (65)
b (b/a)
%k
5 % .2 _3 <1
% C,+C,-B =3 (1+vk)(1-:a) (66)
where
e = [eGxy)] ) = t(1,y)
(X))
e, = ey, = tb/a5y)
B
= 1
B, = ——— i
1 (Tm'To)“k
(68)
D
- 1
D, = ———
1 (Tw—To)ak

Equations (63), (64), (65) and (66) express the following continuity con-
ditions, respectively: (a) radial stress continuity at r=b; (b) radial

stress continuity at r=a; (c) radial displacement continuity at r=b; and

(d) radial displacement continuity at r=a. The simultaneous solution of
(63) through (66) will give the values of El and 52 needed in Equations

(58) and (59).

C. The Limiting Case c +«.~ The limiting case in which the outer

radius c of the base annulus becomes very large in comparison with the

inner radius b can be handled as follows: Solve Equation (65) for 51 and




(66) for 31 and use the results to eliminate 51 and El in (63) and (64).

Equations (63) and (64) will then constitute two equations in two unknowns

El and EZ' If b/c is then allowed to approach zero in those two equations,

they reduce to

( + )-C, ( ) S
11 vg g 1+vk 2 "l4v Eg 1+\>k b2
Sﬂ Ek 1+v aZ
= (1-=-—8) - up/a,y <
o Eg 1+vk b2
E 1
T Tev, (%) (69)
g k
T, G2+ B 1 ) - T (o + S _1 ) = B Sal (70)
1 l-v8 Eg 1--vk 2 1+vg Eg l—vk E8 l—vk

and these two equations are to be solved simultaneously for the values of

él and 52 needed in Equations (58) and (59).

D. Numerical Evaluation of Stresses in the Glass.- By setting x

equal to Xy, x3, . xM-l in Equations (58) and (59), one can for any
given y obtain the values of Sr and Sc at all of the radial stations

1 =2,3,...,M-1 (x=1, 1+ Ax, 1+2Ax, ..., b/a) in the glass, including
the two interface stations (1 =2 and 1 =M-1). The integrals W(xi,y)
called for in Equations (58) and (59) are, in accordance with (52),
defined by

Xy

H(xi.y) = I f(x,y)dx (71)
1

-217-




where f(x,y) = 1-t(x,y). They can be evaluated numerically with the help
of the following iIntegration formula for the integral of f(x,y) over

one grid division:

X
i
= 2 A% -
LA [ f(x,y)dx A ( fo o * 13 fi_1 + 13 £ fi+1) (72)
Xi1
where i > 3 and
£ 3 E0x o) £, = f(x_,,y) , etc. (73)

The numerical integration formula (72) is obtained by passing a cubic

equation through the ordinates f The W(xi,y) can

12> fi-10 fy and By

be expressed in terms of the W, as follows:

i

w(xz,y) =0

w(x3vY) - w3

W(xa,y) =W, + W, (74)

: 1
W(x,,y) = I W
1 j-a j

Alternatively,

W(x,,y) = 0
2 (75)

V(XIJ) = W(xi-l’Y) + W (1>2)

i
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For the special case in which the temperature throughout the package
is uniform at TQ, the temperature paramecter t (also ta and tb) is identi-

cally zero. Then f(x,y) becomes 1 and Equation (71) reduces to
Wixg,y) = x =1 (76)

At the lead-glass interface (xi = x, = 1) in particular, we then have

2

W(xg,y) = Wix,,y) = W(l,y) = 0 (77
and at the glass-base interface (xi =X = b/a),

W(x ,y) = W(x, ;,y) = W(b/a,y) = (b/a) - 1 (78)

IV. COMPUTER PROGRAM

An APL computer program, ANN, that calculates the dimensionless tem-
eratures and the stresses in the glass at successive dimensionless times
after insertion of the package into the thermal shock test fluid, is given
in this éection, in the pages that come after the text. The program ccmputes
dimensionless temperature and stresses at the grid stations 1 = 2,3,...,M-1
of Figure 4 for the dimensionless times corresponding to the grid stations
a=2,3,4,... (y=4y, 2Ay, 38y, ...). The program is based on the analyses
in Sections II and III. A

As explained in the first thirteen lines of the program, before calling
on ANN one must assign numerical values to certain APL variables. These

variables are listed below along with their meanings.
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APL Variable Meaning
AY Ay ,
TMAX Value of y at which calculations should stop
NSEGS Number of radial segments in glass annulus;
equals M-2 (see Figure 4)
A A (see Equations (1))
B B (see Equations (1))
c C (see Equations (1))
D D (see Equations (1))
NUG vg
NUM Ve
ALGM ag/ak
EGM E 8/Ek
BA b/a
CASE Asgign to CASE the value 1 if c/a is finite,
2 if c/a is infinite
CA c/a (not used if CASE «2)
PRINT Assign to PRINT the value 1 if only interface

results are to be printed, and the value 2 if
results for all the glass stations are to be
printed

The output will repeat some of the numerical input data, identified
by words rather than symbols, then give the computed temperatures and
i stresses at successive times. If PRINT has been pre-assigned the value 1,

the output data will be for the interface locations only (lead-glass, then




glags-base); 1f 2 the output will be for all stations in the glass, starting
with the lead-glass interface. The APL symbols appearing in the output are

listed below along with their meanings.

APL Output Symbol Meaning
X xat 1= 2,3,...,M-1
TIME y (= 1k /o ¢ a2)
g 88
TEMP 1 -t (= [T(x,y) -T_1/(T -T 1)
ot
TRANSVERSE STRESS St (= )

(Tm_To)Egak

g

LS :
RADIAL STRESS Sr (= (T -T)E a ) '
» "0’ gk

MAX Largest number in a preceding

line of output

MIN Smallest number in a preceding
line of output

When YMAX has been reached, a terminal message will ask DO YOU WANT TO GO
FURTHER? and give instructions for terminating or for increasing YMAX
and continuing the calculations further into time.

Following the program are the inputs and outputs of sample calcula-
tions for a test fluid and package with the following properties:

= 4.051 x lO-A Btu/in%—sec-°F (water-to-Kovar heat transfer
coefficient)

=]

a = 0.009 in.

b = 0.02175 {in.
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leading to

<
=

w &

>

= 0.08 in.

0.

4,

0.

0.

0.

0.

0115925 1in2

2874 in?

000075068 in?

154346 1ind
002262 in?

005466 1in2

48 (number of leads)

1.

0.

0.

366 x 10> Btu/sec-in=°F

082 1b/in?

.23 Btu/1b-°F
.302 1b/1n>
.105 Btu/1b-°F
.22

.56 x 10°°/°F

.2 x 106 lb/in?

3

3.25 x 10°8/°F = 5.85 x 107%/°¢c

20 x 10% 1b/1n2

1.36785
6.19975
4.36151

109.89971

(APL variable:
(APL variable:
(APL variable:

(APL variable:
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vg * 0.22 (APL variable: NUG)
Ve 0.3 (APL variable: NUM)

aslak = (0.78769 (APL variable: ALGM)

Eg/Ek = 0.41 (APL variable: EGM) |
b/a = 2.4167 (APL vari-ble: BA) :
c/a = 8.88889 (APL variable: CA)

c/b = 3.6781

Inasmuch as c/a is finite, the APL variable CASE was assigned the value 1 )
by typing CASE«1l. NSEGS was taken as 5 and AY as 0.2 (trial calculations
showed that they led to a sufficiently fine grid).
In order to demonstrate botﬁ types of ourput capability, PRINT was
assigned the value 1, leading to output at the interface locations only,
then in a second calculation the value 2, leading to output at all the
glass stations. In the first calculation YMAX was set equal to 6, then

increased to 10; in the second YMAX was taken as 0.4.

The first calculation shows that Sr at the lead-glass interface
reaches an extremum value of -0.2459 (see underlined number in the line

of output for TIME = 6.4). This result will be used in the illustrative

application of the next section.
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V. ILLUSTRATIVE APPLICATION

Let us assume that the package considered in the preceding section is
subjected to level A of the MIL-STD-883B thermal shock test (Method 1011.2)
and determine the maximum radial tensile stress developed at the lead-glass
interface in the course of this test., (This is the stress that is most
likely to create a gap between the lead and the glass if the bond between
the two materials 1s poor.) The test fluids will be taken to be water at
100C and 0C, and the ;eal will be assumed to be stress-free at room tempera-
ture (20C).

We first take note of the extremum value of Sr = - 0.2459 cited in the
previous section for this package. The corresponding extremum value of the

stress 1is

op = = 0.2459 (T_-T)E o

=~ - 0.2459 (T_-T )(8.2 x 10°)(5.85 x 107%) pst/°c

= - 11.80 (T@-To) psi/°C

In the preconditioning step of the thermal shock test, the package at room
temperature ('1‘o = 20C) is immersed in the high-temperature fluid (T_ = 100C)
and kept there long enough for the temperature to become virtually uniform
at T . Therefore Tw-To = 80C, and at some time during the package's dwell
in the high-temperature fluid, an extremum lead-glass 1nterfacg radial

stress of

o= - 11.80 (80) = ~ 944 psi (719)
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is achieved. In subsequent steps, the package is transferred back and forth
from the high- to the low-temperature baths after having been temperature-
stabilized in each one. Therefore, in these subsequent steps TG-TO will be
-100C for the transfer from high to low, and +100C for the transfer from

low to high. The corresponding changes of interface radial stress will be

. = - 11.80 (-100) = + 1180 psi (80)
and

o = -11.80 (100) = - 1180 psi (81)
respectively.

The above are transient extremums of stress or change of stress that
occur during the temperature stabilizations. We shall also need to know
the change of stress that has taken place by the end of each step, that
is, after the package temperature has become uniform at T, the temperature
of the bath in which it resides. In order to determine that quantity, we

take note of the last paragraph of section IV, from which we find that
W(b/a,y) = (b/a) - 1 = 2,4167 - 1 = 1.4167

t. - t, = 0

With this information and other numerical data from Section IV substituted

into them, Equations (63) to (66) become

.14034 C., + 43.653 D, = 15.470

1.2821 C1 2 1

.81967 C., - 3.4843 B, = - 1.2195

1.2821 C1 2 1

Cl + .17122 C2 - 26.124 D1 = - 8.3766
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Their scolution is

C1 = 0.47065 C2 = 0.56874 B1 = 0.38939 D1 = 0.34239

Substituting the C. and 52 values into Equation (58), along with the values

1
of the required material constants, and noting that x = 1 at the lead-glass
interface, and that W(1l,y) = 0 when the temperature is uniform (see
Equation (73)), we get

s =0+ o.a;gss _ _0.56874
' (1.22) (1)

7 = .13722

as the stabilized value of Sr at the lead glass interface when the package
is brought from an initial uniform temperature of To to a final uniform

temperature of T_. The corresponding stress change 1s

o, = 13722 (T,-T)E o,
- 13722 (1,-T_)(8.2 x 10%)(5.85 x 107) ps1/oc

= 6.5824 (Tw-To) psi/°C

In going from room temperature (To = 20C) to the high temperature bath

(TQ = 100C), this gives
o = 6.5824 (80) = + 527 psi (82)

In going from the high temperature bath (To = 100C) to the low temperature

bath (T_ = 0C), it gives

O = 6.5824 (-100) = - 658 psi (83)

=232.




And 1in going from the low temperature bath (To = 0C) to the high tempera-

ture bath (Tw = 100C), 1t gives
o= 6.5824 (100) = + 658 psi (84)

In Equations (80) through (84) we have all the information needed in
order to track the interface radial stress during the postulated thermal
shock test. The details of the tracking are presented in Table 1 in whiéh
the units of L and of Aar {(change of stress) are psi, RT stands for rooﬁ
temperature (20C), HT for high temperature (100C), and LT for low tempe;ature
(0C). 1In reading Table 1, one should go entirely across one row before
proceeding to the next row.

The results shown in Table 1 are very interesting and informative.
Column 6 gives the steady state o, at the end of each step, i.e., after
the temperature of the package has become uniform at the temperature of
the bath that it is in. Those stresses are seen to be not very severe,
alternating between 527 psi tension at the end of each high temperature
dwell to 131 psi compression at the end of each low temperature dwell.
However, the transient stresses occurring during the dwells, listed in
Column 4, are seen to be much more severe, ranging from a maximum tension
of 1707 psi to a maximum compression of 1311 psi. The transient tensile
stress of 1707 psi is a rather significant stress for glass, and we note
that it is developed in the thermal shock test of the very lowest level of
severity (level A). This example tends to support the findingé of
Reference 24 and suggests that the thermal shock test should be used with

caution. Too high a severity level could produce excessive transient
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tensions at the lead-glass interface, possibly creating gaps there during
the test, even for well bonded seals. Furthermore, inasmuch as the exces-
sive tensions are transient, those gaps might not be evident at the end of
the test. Another interesting conclusion to be drawn from Table 1 is that
the transient stress occurring during any step of the thermal shock test
(Column 4) and the steady-state or final stress developed in that step

(Column 6) can be of opposite sign.
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APPENDIX A: MATERIAL PROPERTIES

In this appendix are compiled material property data that could be
useful in connection with the formulas of the present report or that might
be of general interest to stress analysts, designers, and screeners of
microcircuit packages. The information has been gleaned from a variety
of sources, including manufacturers’ literature, certain standard handbooks,
treatises, and monographs. Direct telephone contact with knowledgeable

individuals was another valuable source of information.

The following list indica.es the categories of materials covered, each
in a section of its own: ADHESIVES, CERAMICS, FLUIDS, GLASSES, NICKEL-IRON
ALLOYS, SOLDERS, and WIRES.

Unless other conditions are specified, it is to be understood that the
data presented pertain to room temperature and standard atmospheric pressure
conditions.

It should also be understood that, in the case of manufacturers' data,
a more or less standard disclaimer usually applies, to the effect that
although the data are believed to be reliable, the accuracy of the data is
not guaranteed.

Because of the large amount of numerical data presented, it was not
considered feasible to present it consistently in dual form (i.e., customary
units and dual units). 1In order to assist the reader in making the con-

version from one form to another, we list a few useful conversion equations:

<

Temperature . "
1°K = 1°C = 1.8 °F 1°F = 2 °C = é °K
9 9
=236~
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Stress or Pressure

1 pai = 6894.757 Pa = 6894.757 N/m®> = .006894757 MN/m>
1 ksi = 1000 psi

1 GPa » 145,038 ps{ 1 MPa = 145.038 psi 1 Pa = ,000145038 psi

Specific Heat

1 cal/g°C = 1 Btu/1b°F = 4184 J/kg°K

Thermal Conductivity

1 cal/cm-8-°C = 4.186 W/cm-°C = 241.9 Btu/ft.hr-°F = 2903 Btu-in/ftz-hr-°F

Density

1 g/cm® = 62.428 1b/fe’ = .03613 1b/in’

1 1b/£e? = .01602 g/cm®

~237~

N eIy ey =4 R oo ey e s




1. Adhesives

Here we present a compilation of material property data for a few
adhesives of possible applicability to microelectronics. Much of the
data presented is taken from company data sheets reproduced in
"Investigation of the Application of Adhesives in Hybrid Integrated
Circuits" (Report W2-683-TNO4, U.S. Naval Undersea Center, June, 1972;
abridgewment available from Government-Industry Data Exchange Program,
Corona, CA 91720 as GIDEP Report E151-1156); this report also contains
some valuable qualitative information on adhesives. The rest of the data
has come from additional company data sheets and brochures. The
data presented do not reflect the considerable degree of scatter that may
be present in measured shear strengths if pains are not taken to achieve
uniformity of bond line thickness and filleting in the preparation of the
test specimens. Some information on this type of scatter can be found in
the report, “Organic Adhesives for Hybrid Microcircuits," by F.L. Perkins
and J.J. Licari, Autonetics Div. of Rockwell International Corporation
(3370 Miraloma Avenue, Anaheim, CA 92803), July 31, 1975, prepared under
Contract NAS8-26384 for the George C. Marshall Space Flight Center,

Alabama 35812.

"Ablefilm" and "Ablebond" Adhesives.- The following two tables give

data on the "Ablefilm'" and "Ablebond" adhesives manufactured by the
Ablestick Laboratories (833 W. 182 St, Gardena, CA 90248). The "Ablefilm"

adhesives are epoxy adhesives in film form. Those designated ECF518 and

ECF535 contain fillers that make them electrically conductive.
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Designation Ablebond 71-1 | Ablebond 606-1 | Ablebond 761-6 | Ablebond 798-1
Polyimide Epoxy paste, Epoxy paste, Epoxy paste
Description paste, elec~ electrically electricslly
trically conductive conductive
conductive
1000 to Au 1900 to Au 25¢C 1250 >6400 to Au
Lsp 1500 to Al 150C 1500 >6000 to Al
Shear 1200 to Ag 200C 700
Strength, 1500 to Brass to gold-
psi 800 to Cu plated stain-
1200 to Solder less steel
Lap Shear
Strength, psi
after 11 days >3700
@ 185F, 100Z RH
Thermal Conductivity,
Bew/ft-hr-°F 1.2 1.3 @ 250F

"Epo-~Tek' Adhesives.-

adhesives manufactured by Epoxy Technology, Inc., (65 Grove St., Watertown,

The table below gives some data on the "Epo-Tek"

MA 02172).
Thernal Lap Shear Strength, psi

:po-Tek Description Coenductivity,

o8- Btu.in/fr2-hr-°F value, psi adherends
H1l
A20 1000
A2l

through Electrically 1000 Aluminums
H24 Conductive
H40 Gold-plated
B4l 2000 ~ 5000 beryllium
B43 copper
RS54 Electrically 3100 Aluminum
H55 Insulating 2000 Aluminum
H61 7.55

72 Thermally 6.0 7500 Aluminum
074 Conductive 7.6 2500 Aluminus

Electrically
8o Conductive 2000
~240~-
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Transene Company Adhesives.~ The Transene Company (Route 1,

Rowley, MA 01969) gives the following data for 1ts epoxy adhesives. Those
with the Epoxy-10 through Epoxy-17 designations are electrically insulative,

the rest are electrically conductive.

Thermal Thermal
Conductivity Expansion
Designation ’ Shear Strength, psi
Beu.in/fe?.hr.*F| Coefficient,
10 “/°C
Epoxy-10 25-100C 2000 min
Epoxy-11 15 40
Epoxy-12 150C 1300 min
@ 25C @ 125C (1000 hrs)
Epoxy-13 4 30 4 2000 1500
Epoxy-14 12 23 1500 1000
Epoxy-15 4 30 2000 1500
Epoxy-16 4 35 2000
Epoxy-17 10 23 2000
Ohmex - Ag 100 50 1000
Silver-Epoxy,
Types I & I1 100 50 1500
Silver-Bond
Types 40,50,60 100 1500
Cured 1/2 hr 1500 (K)
Microcircuit 21(x @ 135C >1500(L)
Silver, 2021_; 50 Aged 200 hr
Types K & L @ 175¢ >1000
Initial @ 175C 3500
Microcircuit
20 50 After 200 hr
Silver, Type W @ 175¢C 2750
Initial @ 175C 1500
Microcircuit .
22 50 After 200 hr
Silver, Type O @ 175¢C 1000
Gold~Epoxy
GE-10,20,30,40 1000
Nickel-Bond.
Types 40,50,60 6.1 1000 -
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Bysol Adhesives.-

Corporation (15051 E. Don Julian Road, Industry, CA 91749)

following data for its epoxy adhesives:

In its brochure the Hysol Division

of the Dexter

gives the

Shear Strength, psi Thermal Thermal Expansion

Desigsation 77F ] -40F 1 180F Conductivity, | Coefficient,
curedy’ " Cured 7 days @ 77F 10 %cal/caa-*c | 1075/5c
1c 2300 1750 1750 1600 10.4 30.3

907 3200 3000 1250 400 6.8 45

6c 2100 2000 1600 1850 10.7 2.4
615 3100 2950 2700 150 9.0 50.6
309 1630 1865 1020 960 5.0 53.9
608 2500 2000 1100 150 4.8 89.6
0151 2600 1850 2000 500 4.7 102.8
Ix 2600 2200 2000 150 8.2 88.6
9340 2300 2000 2100 1850 7.3 29.4
9410 3600 3500 2500 450 5.2 50.4

Technical Wire Products, Inc.-

This company, located at 120 Dermody St,

Cranford, NJ 07016, gives the following strength properties of two of its

conductive epoxy adhesives in its Data Sheet CS-724, dated 1975:

Minimum Shear Strength, psi
Designation |~ i at R.T. Cured at 210F
72-00008 1000 900
72-08116 1400 1350
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2, Ceramics

Ceramics are used for a variety of purposes in microcircuit packaging --
for example, as lids, bases and substrates in flatpacks. Here we summarize
the thermal and mechanical properties of a number of ceramics, using data
provided in several éuppliers' literature.

One of the main suppliers of ceramics for microelectronic applications
is the 3M Company (Chattanooga, Tenn. 37405), which produces a line of
ceramics under the trade name "AlSiMag." The following two tables give

the properties of a selection of those ceramics.

Aluming (uzo )
Matarfal 862 942 94X 94X 96X 99.5%1 99.52] 99.5% 99 9*
"muu." Humbar 860 606 620 m 117 614 753 772 638 805
Spacific Cravity 3.8 3.68 3.86 3.62 3.7 3.70 | 3.8% 3.89 3.85 3.9%
Color white; ruseet| brown white| black| white| white | white| white {off-wiaicre
Theresl 10-6/.' 10-4007 3.3 4.1 3.6 3.7 3.7 3.6 3.7
! 1 10~1300F 4.0 4.6 4.2 4.2 4.2 4.1 4.2
*pansion 70-1630F a1 4.8 |e6 a3 lad tas [ 4.3
Coatt. 10°%/%¢ | 25-300¢ | 6.5 7.4 { 6.0 {7.6 ;6.6 |6.7 [6.6 | 6.5 [ 6.7
25-700C 7.3 1.7 7.2 8.2 1.5 1.6 7.4 1.3 i 1.5
25-~900C 7.7 8.0 7.4 8.7 1 17.9 7.8 7.2 7.7y 1./
Tensile Strength, ket 20 126 25 |28 |
+
Coupreseive Strength, kei 4«00 i 350 300 ns 240 ' 375 380 n a9
Flexural Strength, kel T4 i &S 37 44 e 46 48 70 65 100
Hodulus of Elasticity, 105 pei 43 ! 47 55 : 55 50 58
M ]
Shear Modulus, 10° ps1 BT 19 |22 22 | oa
Potsson’s Ratio .22 .22 .22 l .22 .22 -—-l *
Btu-in 25¢C 192 192 244 255 258
_ 300C 99 99 119 128 130
Thernal [ {33 T8 4 s$00c 1o 10 75 18 81 i
61 i i
36.7 : 4
18.7 '
1.0 )
8.8 l




Berylliis Titanis Foaterite Alkaline Earchs
Materisl (Re0) ('noz) (2H30-5102) (porcelains) (.12?355)
LTy
AlSiMag” Wusber i1} 828 192, 193 243 842 531 825
Specific Cravity 2,92 2.85 4.0 2.8 2.9 2.6 2.8
Color white vhite tan, grey buff off-white white vhite
Thernal ln—.,.' 70-400F 4.2 o4 5.6 5.2
Sapsasion 70-1300P | 4.7 5.0 6.2 5.7
70-1650r)] 4.8 6.5 $.7
Costt. 10°8/°¢c | 25-300¢ | 7.5 6.7 8.3 0.0 9.4 “s 1.4
23-700C | 8.4 8.5 9.0 11.2 10.2 5.5 3.3
23-900Cc | 8.7 8.7 11.7 10.] &5
Tensile Strength, ki 2) 23 1.5 10 11
Compreseive Strength, kst 260 >200 100 85 90 200 230
Tlexural Strength, ksi 313 >32 20 20 20 15 25
Nodulus of Elasticity, l.t)6 pet 47 47 21
Shear Modulus, 106 poi 19 19 9
Poissocn's Ratio .23 .23 .23
25C| 1741 >1600 S5 s5
Beacin | 300c| ‘a1 38 35
Thermal [ {30 3 134 500C| S22 29 29
Conductivity s00c
v B5C1 250 1.9 1.9
P~ JooC| 12t 5.0 5.0
- sooc| s a2 8.2

The following is a selection of data from the brochure of the Center-

flex Ceramics Corporation (188 Eighth Ave., Hawthorne, NJ

07507).
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Kyocera International, Inc. (8611 Balboa Ave., San Diego, CA 92123)
is another supplier of ceramics for microcircuit applications. The following

is a selection of data from its brochure.

Material Alumina m,c,) Posterise Stoatite Lithis Ticanta Carmmt
[vor FIT ] 921 ]98T ] 98% | 99.5K[99.82 | 93.52] 993 (1M90-310,) | (x0-310,) 1(L1,0-1,0 810, (r10,)
Dretpration A-840 | A-4as] a7 | a-376] a-sre| 23| a-a0 [a-ss0| a-a9s] rot120 v-11335-210 w11 L-5%0 t-14¢) 1192 | re-20
derk | dark light dark Seay TR §lTver]

Ooler viotes| ¥ 4 white | vhite| vhite] vhite | ivory { vhice| whitte, yollow trory [vhtte L e whice wlack retlow | Whire
101¢

::::u’ 3¢ 39 13 |3.e [3e |3 |39 |ns |30 |20 8 |21 2.2 L7 B WY [ %}

Tlenwral

Stcength, » 0 “ ] a“ [} " ] s? 2 0 % n 12 2 U] 137
st

Compreseive

Strengeh, e 126

[

Nodelus of

Rlaettcity, » S0 sy S 5% n 3 (%)

m‘ [

“'::_ 0 -400c 6.3 7.0 {63 J6.1 |es |68 |68 lo0 |60 |00 e |72 81 ° 1.y (e 1.7

Costtictentd g moclr.s 127 {28 |76 boa |ra frs L1 Joo .t o9 o .06
.

1071

Theraal

Casductivity, 0.06 [0.04 [ 0.0 10.05 | 0.06 [0.06 {0.07 {006 | 0.06 | 0.008 ©0.000 ]0.006 9.008

cal/em-0-°C

Specifie
. 0.20 | 0.19 | 0.29 Jo.19 [0.19 |o.19 |o.28 |0.19 | 0,20

eal/g-’C
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Data are given below on some of the ceramics of the Coors Porcelain
Co. (600 Ninth Street, Golden, Colorado  80401). Where minimum values

are given, they are "a minimum mean for a sample of 10 specimens."

Alumina ?nzo,S Beryllis (Be0)
Macerial 943 | 96 962 [ 99.5% | 99.5% | 99.5% 99,61 963 | 99.52
Dasignation AD-94 |AD-96{ ADS-96F| AD-995| ADS-995 | AD-999 VISTAL BD-96] BD-995
Specific
Crevity 3.62 13.72| 3.15 | 3% 2.8 3.96 3.99 2.80 { 2.85
Colo trans~—
4 vhite | vhite] white | fvory ivory ivory lucent blue white
wvhite
Compresaive | asc 05 (%0 | — | 380 — 350 370 225 | 30
“’::: + |io0oc S0 |- -—_ -— — 280 7 — 40
Tlesural 25C cyp | 51 52 60 55 68 80 ¥} 25 0
Strength, 25C win | 46 47 -— — — 75 —— 20 3
ki, 1000C typ | 20 25 — — 0 23 ® -—
1000C =in 1? 20 e — 55 —— ———
Teasile
25¢ 28 2t — — 4 20 —_ 20
Sereas™  lioooc 13 (6| — | — | = 3 1s — 5 :
Modulus of ;
n:-u:x:y. &1 vy ~— 54 — 56 57 [ 51
10° pet
Shear
"':"1“'~ 17 18 —_ 22 — 23 23.5 17 20
10 pet
ik
Modulus, % |23 | — » _ »n 3 3 s
i
Transverse
Somic
Velocity, 8.9 Jeu1 — 9.8 —— 29 9.9 10.7 | 1.1
200 /e
Poisson’s
uatis 2 . .22 — .22 .22 .30 .26
. 700 - 25¢  [3-¢ | 3.4 — 3.s = 3.4 3.4 7.4 | 2.4
Thersal 25 -200C (6.3 (6.0 6.2 2.1 5.9 6.5 6.5 6.3 6.4
Expansion 25 -500C [7.1 | 7.4 1.0 7.6 6.7 7.4 7.4 1.5 1.7
Coafficlent, | 25-800C |7.6 |B8.0 1.7 8.0 7.3 7.8 7.8 8.4 8.5
1078/%¢ 25 -1000c}7.9 8.2 8.1 8.3 2.7 8.0 8.0 8.9 8.9
25 -1200¢!8.1  18.4 — -— — i 8.3 3.3 9.2 9.4
Thoraal 20C 18.0 124,71 26.3 | 35.6 33.6 - 38.9 39.7 159.0 | 260.3 \
"'“n 100¢ 14.2 |18.8 | 20.1 | 25.9 28,9 . 27.6 28.4 133.9 | 200.8
S““I 4 t¥9 s00C 7.9 fw.o ) 171 | 12.1 12.6 | 13.4 13.4 66,9 ] 83.7 H
- 200C 5.0 | 5.4 ! a— 63 | — . 6.3 6.3 | 25.1 | 29.3
Specific
Tooc. 80 |80 | 80 | am 8% 80 880 1285 | 1297 :
il
3/xg: X
'\
Y
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Augat, Inc. Ceramic Materials Division (12 Coffin Ave., New Bedford, MA,

02746) gives the following properties for three of its alumina ceramics:

A1203 Content (min) 95.0% 97.6% 99.5%
Compressive Strength, ksi >300 >250 >300
Flexural Strength, ksi 64 46 62
Specific Gravity 3.70 3.76 3.89
Thermal Conductivity,
° .Q55 .064 .070
cal/cm-s8.°C

The Alberox Corp. (Industrial Park, New Bedford, Ma 02745) gives the

following data for its 95% alumiﬂa ceramic (designation A-950):

Color white
Specific Gravity 3.69
Tensile Strength, ksi 31
Compressive Strength, ksi 385
Flexural Strength, ksi 53
Modulus of Elasticity, 106 psi 41
Thermal Expansion Coefficient, 10—6/°C 9.2
Thermal Conductivity, Btu—in/ftz-hr-°F _ 145
Specific Heat, cal/g-°C 0.19
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Ceramaseal, Inc. gives the following thermo-mechanical data for its

alumina ceramics:

85Z min. 92.5Z win. 96% min. 99% min.

Material Alumina Alumina Aluming Alumina

Tensile

Strength, 17.5 18.5 25 34
kei

Compressive

Strength, 240 280 400 300
ksi

Flexural

Strength, 42 46.2 60 58
ksi

Thermal

Conductivity, 0.031 0.02 0.043 0.036

cal/cm-8.°C

Thermal 25-200c | 5.68 6.18 6.5 6.7

Expansion

Coefficient, [400 ~600C 7.83 8.5 8.9 8.9

1078 /2¢

The following table gives properties of three of the alumina ceramics

obtainable from Duramic Products, Inc. (426 Commercial Ave., Palisades Park, NJ):

96Z 992 . 99.7%
Material Alumina Alumina Alumina 1
Designation HT-960 HT-990 HT-997
Color wvhite wvhite ivory
Specific Gravity 3.76 3.85 3.94
Tensile Strength, kai 25 30 30
Compressive Strength, ksi 340 375 380
Plexural Strength, ksi 46 50 50
Modulus of Elasticity, 10° psi 45 50 55 '
Thermal 1078 /¢ 3.5 4.1 3.5
Expansion pr3
Coefficient | 10 ~/°C 6.4 7.4 6.4
Thernal Beu-in/ ftz-hr-’F 220 205 225 %
Conductivity W/ x 31 29 32
Specific Btu/lb-°F, cal/g-°C 0.19 0.20 0.20
Heat J/kg-*K : 795 ; 837 837
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| A particular 99.5% alumina ceramic utilized by the Sandia Laboratories
is reported by them to have the following properties (''Ceramic Substrates

for Hybrid Microcircuit Applications,' by R.E. Kuntson, Report SLA-73-0886,

% Sandia Laboratories, Albuquerque, NM 87115, Sept. 1973):

Color white
Specific Gravity 3.90
Compressive Strength, ksi > 400
Flexural Strength, ksi 68
Thermal Conductivity, 20C -075
cal/cm-8-°C 100C .065
400C .028
Thermal Expansion 25 - 200C 6.0
Coefficient, 25 - 500C 7.3
10-6/.c 25 -~ 800C 7.9

The Corning Glass Company of Corning, NY produces a white, non-porous
machinable glass-ceramic with the trade name MACOR and the company code
number 9658. The following data is abstracted from the Corning company's

j brochure on this material.

Specific Gravity at 4C 2.52
Thermal Expansion RT to 400C" 9.4
Coefficient, RT to 600C 11.0
| 10-6,.c RT to 800C 12.3 .
A Y
' Theraal 25¢ 0.004 cal/cm.s."C i
' Conductivity 7P 11.68 Btu-in/hr-ft2-°F ]
Flexural Strength, ksi 15
Compressive Strength, ksi 50 1
Modulus of Elasticity, 106 psi 9.3
Shear Modulus, 10° pst 3.7
t\ ]
Poisson's Ratio .26
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At least two companies manufacture alumina substrates in tape form for
thick film and/or thin film microelectronic circuits. They are Materials
Research Corporation (Orangeburg, NY 10962) and Coors Porcelain Company
(600 Ninth Street, Golden, Colorado 80401). Some of the properties of these
substrates are listed below. The three Materials Research Corp. ceramics have

the general company designation Thin Film "Superstrate" 996.

Source Materials Research Corp. Coors Porcelain Co.
Hi-REL996A Hybrid Commercial Thick Thin
Designation film filw
Sed 996 S 996B 996C ADS-96R ADS-995
Alumina
Content, X 99.6 99.6 99.6 96 99.6
Specific
Gravity 3.86-3.90 3.87 >3.81 3.74 3.89
20C 0.063 0.078
Thermal 25¢C 0.090 0.090 0.090
Conductivity, 100C 0.048 0.069
cal/cm.s.°C 300C 0.050 0.050 0.050
400C 0.029 0.030
500C 0.038 0.038 0.038
25-200C 6.3 5.9
Thermal 25-300C 6.3 6.3 6.3
Expansion 25-500C 7.1 6.7
Coefficient, 25-600C 7.1 7.1 7.1
10_6/'0 25-800C 7.3 7.3 7.3 1.6 7.3
25-1000C 8.0 7.7
Flexural Strength, ksi 90 90 90
Conpre:::ve Strength, 400 400 400

PRSP SR




Porcelain enameled steel has been proposed as an alternative to pure

ceramic substrates. According to one supplier of such substrates (The Erie

Ceramic Arts Co., 3120 W. 22 Street, Erie, PA 16505), 20 gauge steel
(.034-.038 in.) is normally used, and the enamel can be applied to only one
or to both sides of the steel in a thickness that is normally 5 or 6 mils
(per side) but that can be varied 1f requested from 3 to 15 mils. The

following properties are cited for the two components:

Porcelain Steel
Enamel
Thermal Conductivity,
W/ cm. °C .01 .45
Thermal Expansion
Coefficient, 12.5-13.5 15
10°8/°¢

The enamel 1s fired at 800 to 870 C. The larger expansion coefficient of the

steel puts the porcelain in a state of compression at room temperature.

-252~

‘-n-ﬁh&_d-l--II-IIII.IIIl.IIII-.........l.IiIﬂiﬁiﬁlﬁiﬁiﬁil.lill-llﬂﬂ a
T L e

e .




3. Pluids

Here are assembled some thermal and mechanical properties of several
fluids (including air) that are of possible use as the low or high tempera-
ture fluids for thermal shock and thermal cycling tests (e.g., those of
Methods 1011.2 and 1010.2 of "Test Methods and Procedures for Microelec-

tronics,’ MIL-STD-883B, Dept. of Defense, 3! Aug. 1977).

3M "Fluorinert" Fluids.- The following table and graphs give properties

of seven of the "Fluorinert" liquids manufactured by the 3M Company of
St. Paul, Minnesota. Three of these substances (FC-40, FC-70, FC-77) are
among the thermal shock test fluids suggested in Method 1011.2 of the

MIL-STD-883B document referred to above.

Designation FC-72 FC-84 FC-77 FC-104 FC-75 FC-40D FC-43 FC-70
Boiling °F 133 176 207 214 216 311 345 213
Point °C 56 80 97 101 102 155 174 215
Pour °F -13 -139 - 166 -85 ~126 -70 -58 -3
Point °C -90 -95 ~110 =65 -88 -57 -50 =23
Reat of Vaporization R
at B.P., Btu/lb 38 35 36 40 38 31 30 29
| 214F 0.230
Specific 230F 0.234
Heat 250F 0.236
of the 300F 0.242
Vapor, 350F 0.246
Btu 400F 0.250
1b-°F 450F 0.252
SOOF 0.26
Thermal
216F 0.0080
f:‘y"’:;“"‘ 250F 0.0112
the Vapor 300F 0.0251
Rtu ’ 350F 0.0135
Tehr °F 380F 0.0130
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UCON 100.- 'UCON 100" is a suggested high temperature fluid for levels

D and F of the MIL-STD-883B thermal shock test. This product, which is

sold by the Blue M Electric Co. (Blue Island, Illinois), originates as

"UCON Heat Transfer Fluid 500" of the Union Carbide Corporation (270 Park
Avenue, New York, NY 10017), where it also is designated as "UCON Fluid
50-HB~280X." Its following properties are taken from graphs in the 1981
"UCON Heat Transfer Fluid 500" brochure of the Union Carbide Corporation.
The thermal conductivity values given below differ somewhat from those cited
in the Blue M Electric catalog for UCON 100; however, being the more

recent, they are also probably the more reliable. The pour point of this

fluid 1s given as -37C (-35F) and the boiling point as >260C (500F).

Temperature Thermal Conductivity, Specific Heat, Density,

°F °c Btu/ft-hr.°F Btu/1b-°F 1b/fe3
0 -18 0.100 0.436 65.7
100 38 0.095 0.480 63.5
200 93 0.090 0.517 61.0 3
300 149 0.085 0.543 58.7
400 204 0.080 0.560 56.1
500 260 0.075 0.570 53.6

Nitrogen.- Liquid nitrogen is the suggested low-temperature fluid

for levels E and F of the thermal shock test in MIL-STD-883B. Nitrogen
has a melting point of -209.86C and a boiling point of -195.8C. Its heat

of vaporization at the boiling point is 2.80 kilojoules per gram atom

(= 47.6 cal/g = 85.6 Btu/1b). Some of its other properties at 1 atmosphere

absolute pressure are given in the following table.

=256~




o et

e e T
Liquid =345.7 -209.86 .0945 .48 54.5
-342 -208 .0924 A8 54.0
-333 -203 .0869 .48 52.5
=324 -198 .0815 .48 51.1
=320 -195.8 .0793 .48 50.4
Gas -320 -195.8 .266
=315 -193 .0044 277
-297 -183 .0050 .243
-294 -181 .0051 .256 .237
-279 -173 .0055 .218
-261 =163 .0061 .197
<243 -133 .0065 .180
-225 =143 .0069 .165
-207 -133 .0075 .153
-189 -123 .0080 .143
-171 -113 .0085 134
-153 -103 .0091 <126
=133 -93 .0096 .119
-117 -83 .0101 .113
-99 =73 .0106 .107
-$3 =53 .0116 .0970
-27 -33 .0124 .0889
8.6 -13 .0132 .0820
32 1] .0138 .249 .0781
4.6 7 .0141 .0762
0.6 27 .0150 .0711
117 47 .0158
122 50 .0139 .0660
in 77 .0169
212 100 .0178 .0571
261 127 .0189
302 150 .0197 .0504
351 177 .0207
392 200 .0215 .250 0450
[7) ] 227 .0225
331 7 .0241
872 300 .0249 .0372
621 327 .0258
711 7 .0273
752 400 .253 .0317
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Water.- Water is the MIL-STD-883B suggested fluid for level A of the
thermal shock test. Some of its properties at atmospheric pressure are

tabulated below.

State Eemperatufe Thermal Condustivigy Specific Eeat Density
F C Btu/ft-hr.°F Btu/1b:°F 1b/ft]
Liquid 32 0 .33 1.00 62.5
50 10 .333 1.00 62.5
100 37.8 .363 1.00 62.0
200 93.3 .382 1.00 61.2
212 100 . 345 1.00 59.9
Steam 212 100 .0145 .489 .0372
240 116 .0148 .482 .0356
280 138 .0159 475 .0336
320 160 .0170 471 .0322
360 182 .0182 .470 .0316
400 204 .0193 471 .0289
500 260 .0226 474 .0258
600 316 .0260 .482 .0233
700 371 .0297 .489 .0213

Its heat of vaporization at the boiling point, 212F, is 970 Btu/lb (540 cal/gm).

Air.- The corresponding data for dry air are given in the following table.

Air is the fluid generally used in temperature cycling.
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Temperature Thermal Conductivity Specific Heat, qp Density
°F °C Btu/ft-hr.°F Btu/1b.°F 1b/ft3
-300 -184 .0050 .252 .236
~250 -157 .0064 L2644 .181
-200 -129 .0078 .243 .145
-150 -101 .0092 .242 .123
~100 -73.3 .0106 L241 .107
=40 =40 .0121 .24 .092
-20 -28.9 .0126 .24 .089
0 -17.8 .0131 .239 .0863
32 0 .0140 .239 .0806
60 15.6 .0146 .240 .0763
100 37.8 .0155 241 .0709
150 65.6 .0166 .241 .0650
200 93.3 .0176 .242 .0601
250 121 .0186 + 243 .0558
300 149 .0195 244 .0520
350 177 .0205 . 245 .0488
400 204 .022 . 246 .0460
450 232 .023 .247 .0436
500 260 .024 .248 .0413
550 288 .025 .249 .0391
600 316 .026 .251 .0373
700 371 .027 .253 .0341
800 427 .028 .256 .0314
900 482 .030 .258 .0291
1000 530 .032 .263 .0271
1500 816 .040 .277 .0202
2000 1093 .047 .287 .0161
2500 1371 .046 .291 .0133
3000 1649 .054 ..296 .0114
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4, Glasses

Corning Glass Data.- Mechanical and thermal properties of a number of

glasses manufactured by the Corning Glass Works of Corning, NY are presented
in the tables that follow. The terms working point, softening point,

anneal point and strain point, that appear among the column headings, refer
to temperatures at which the glass has certain viscosities. The following
definitions of these terms are adapted from the report, "Thick Film Glasses,"
by R.W. Vest, Purdue University, West Lafayette, Indiana 47907, Nov. 15, 1978
(final technical report to the Naval Research Laboratory under comtract

N00173-77-C-0142):

Working Point -~ The temperature at which the viscosity is 103 Pa-s (104 poises).
This temperature is the upper end of the working rauge, which extends from

6.6 3

a viscosity of 10 to 10~ Pa-s (107'6 to 104 poises).

Softening Point - The temperature at which a fiber elongation rate of
1 mn/min is measured by ASTM Method C-338. For a glass with a specific
gravity near 2.5, the softening point corresponds to a viscosity of

06.6 7.6

1 Pa.s (10 poises).

Anneal Point - The temperature at which a fiber elongation rate of
0.0136 cm/min is measured by ASTM Method C-336. Internal strains will
be relieved in about 15 minutes at this temperature, and the viscosity

is approximately 1012 Pa-'s (1013 poises).

Strain Point - The temperature at which a fiber elongation rate of
0.00443 cm/min is measured by ASTM Method C-336. Internal strains will
be relieved in about 4 hours at this temperature, and the viscosity is

approximately 1013'5 Pa.s (1013 poises).
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The "set point,” which appears in a column heading related to thermal expan- ;

sion, 18 defined as the strain point plus 5°C.

The graphs that follow the tables give more detailed thermal expansion

and viscosity data for some of the glasses. For two of the glasses (codes
7056 and 7059) the graphs include thermal conductivity as a function of
temperature, and for one of these (7056) also specific heat as a function ‘

nf temperature.

Coraing Seal Viscosity Data, °C Density Th, Exp. Coeff., 10'7/'c

Glass Temp., Working Softening Arneal Strainm 3 0o 25 C to

Code *C  Point  Point Point Potoe 8/ 309 ¢ set Point

e 4 350 312 5.2 68

0081 1000 696 s16 473 2.47  93.5

0120 980 983 630 435 395 3.05 89.5 99

1 176 654 620 360 79 97 ]

1416 463 386 364 5.26 81 91

1417 427 6 3% 5.60 89 %

7000 105 1080 702 90 ak9 226 4.5 sS4

7050 1050 1027 703 s01 461 2.24  46.0 S5L.1

232 1050 1128 712 40 43 2.27 4.0 531

756 1050 1058 718 512 4n2 2.29 5.5 S8

259 1160 844 639 593 2.76  46.0  50.1

7062 975 T 6830 488 450 2.31 49.0 57

7063 917 635 A88 458 3.13 455 54.5

700 1075 1068 4% 456 213 32,0 ¥

1200 1250 873 626 5% 2.62  65.0

7388 430 415 1 3% 5.7 90 e

5% 450 3% 4.68 67 67 (to 300 C)

7570 aT0 560 440 %3 2 s.42 8 9.9

72 as0 3% -6.3 95 9

574 750 544 82 527 -6.3 3 45 (to 750 C)

7573 430 370 63 ®  (to 450 ©)

7378 330 M5 S.82  65.4 70 (to 460 C)

na 4% 3rs 6.45 97 97

58 480 3% -6 [N 83 (to 480 C)

e a3 430 65 209 s.1 68 M

509 400 338 -6 0 78 (to 400 C)

7590 “o 173 6.45 97 Y]

1992 A28 m 645 97 97

7993 650 470 5.6 420 42 (eo a0 )@

7994 380 480 -5.6 4.6 39.4 (to 420 C)

7388 a18 362 1Y)

72 430 ns 5.00 91.6 -82 (to 420 €)

70 1282 821 560 310 2.2 2.8 W ;
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Corning  Seal Viscosity Data, °C Density, _Th. Exp. Coeff., 1o’¢c

Glass Temp., Working Softening Anneal Strain /c.3 0 to 25 C to

Code °‘C Point Point Point  Point 300 C Set Point

8161 600 435 400 3.99  90.0 95

8445 714 623 592 4.03 84 100

8463 377 316 300 6.22 104.0 105

8830 708 501 460 2.2 49.5

8870 800 823 578 427 189 4.33  91.0 96.2

9010 1000 646 446 408 2.66  89.0

9013 1000 659 462 423 2.64  89.0 1
9108 742 538 496 2.35 53 '
9119 754 s12 465 2.35 53 '
9155 1000 729 557 515 2.67  88.5

9182 510 450 69 347 4.80® 790 83 ]
9362 975 975 627 435 395 3.1 91.5 101.5 ’
9363 975 627 435 395 3.08 8.5 99.3 {
9365 995 630 434 394 2.55 91.5 102.8

(2) Data are for glass fired at 640 C. If fired at 540 C, the 0-300 C expansion
coefficient is 54 x 107 /°C.

®) Preform density

Corning Specific Thermal Elastic Moduli, Poisson's Modulus of

gz::l g:;7£..c s::g:;- 106 psi Ratio Rupture ,

cal/cms- °C Ten:ile Sheer v ksi
T1913F .0023 :
0120 .14 .0018 8.6 3.5 .22 *
7040 8.6 .23
7050 8.7 .22
7052 8.2 3.4 .22
7056 SEE GRAPHS 9.2 3.8 .21
7039 ol 9.8 3.8 .28
7070 7.4 .22
7570 8.0 .28 "
1572 6.7 2.62 .27 -6 (-1.5 at 400 C) '
1574 9 10 (12 at 500 C)
7575 7.44 3 .25 6
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Technology Glass Data.-

Sunnyvale, CA

package sealing.

below.

The Technology Glass Company (390 Potrero Ave.,
94086) supplies glasses that are intended for microcircuit
Some of the properties of these glasses are tabulated

Except for the thermal conductivities, which were obtained through

telephone contact with the company, all of the data are taken from the

Technology Glass Company's brochure CD180-0.

Technology Equivalent Sealing Softening Density, Thermal Thermal
Glass Code| Codes Tewp., Point, /cn3 Exp. Coeff.| Conductivity,]
. . 8 (30-250 C),| cal/cm-s-°C
10"7/%¢
CV-111 485 380 5.92 68.8
7583 485 370 6.0 84.0
LS-0110 KC-1
NCG-556 460 400 4,77 53.0 .00197
LS-0113 KC-1M
NCG-560 450 400 6.85 64.0 .00217
DC-5
LS-0802 NCG-558 410 360 6.78 77.0
LS-0803 KC-400 :
NCG-564 400 350 7.19 67.5
DC-10
TG370 400 320 6.25 78.0
XS$-1175 420 345 4.70 74.0
XS-1175MK 420 345 4.70 74.0
7585 415 365 5.1 67.5
T1918F KC-402 415 350 5.2 68
LS-0120 NCG-566 415 385 6.92 67.5
LS-1001 NCG-569 410 370 5.74 65.5
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High Expansion Coefficient Glasses.- The Westinghouse Electric Corp.,

under contract to the Lewis Research Center of the National Aeronautics and

Space Administration, has developed a series of high expansion coefficient

glasses which are described in the following report: "Development and Evalua-

tion of Controlled Viscosity Coatings for Superalloys," NASA-CR-72520 (NTIS

designation: N70-14570).

The characteristics of three of these glasses, as

given in NASA Tech Brief 70-10429 (Dec. 1970), are listed below. The sag

point 18 defined as "the temperature at which the glass begins to soften or

flow."

Glass Sample No. 53 54 6
Sio2 39.6 37.3 64.8
Na20 11.6 11.8 9.6
A1203 18.4 22.4 9.4
KZO -— —_—— 13.1
Composition
MO _— ——— 3.1
(wt %) 8
Ca0 18.4 14.0 ———
'1‘102 6.9 4,7 _—
BaO _— 4.7 ——
NaF 5.1 5.1 ——
Sag Point, °C 593 602 530
Thermal Expansion
Coeff., 107 7/°C 111 94 131
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Additional Strength Data.- In the above tabulations modulus of rupture

data were given for three of the Corning glasses. Here we give some additional
information, qualitative as well as quantitative, on the mechanical strength
of glass.

At room temperature glass is a brittle material. That is to say, it can
be assumed to remain perfectly elastic up to the point of fracture, and
fracture occurs when the maximum tensile stress reaches a critical value.

The Corning company's booklet on "Properties of Glasses and Glass-Ceramics"
states that theoretical calculations place the intrinsic strength of glass
as high as 5 x 106 psi and tests on very small diameter glass fibers

5 x 10-'5 in.) have shown tensile strengths on the order of 106 psi, but
"the useful strength of glass is but a small fraction of these figures
because of stress concentrations introduced by surface imperfec.ions." The
booklet goes on to say that 1/4 in. diameter rods with pristine surfaces may
show tensile strengths of 250,000 psi, but normal handling in service may
introduce surface imperfections that reduce this strength to around

10,000 psi. For an adequate design safety factor, the booklet suggests a
1000 psi ﬁorking stress for annealed (stress-free) glass under sustained
load for 1000 hours or more, regardless of the chemical composition of the
glass.

From the above discussion it is clear that there is a size effect on
the strength of glass, related to surface flaws. G.0. Jones ("Glass,"

John Wiley & Sons, Inc., 1956, p. 94) describes this effect in the following
terms: "The average strength is a function of specimen size, smaller specimens
being, on the average, stronger than large specimens. Reduction by a factor )

of 10 in linear dimensions causes an increase of about 10 percent in the

*See also Section IX of Chapter 1.
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average strength. A corollary to this is that higher values are always

observed in bending than in tensile tests ~- because the maximum stresses

are here applied to only a small part of each specimen.”

The problem of strength prediction for glass is further complicated
by the phenomenon of "static fatigue'" -- that 1s, the dependence of static
strength on the duration of the applied stress. This dependence is
illustrated by the following data for glass broken in flexure tests at room
temperature (abstracted from graphs in E.B. Shand's "Glass Engineering

Bandbook," 2nd edition, McGraw-Hill Book Co., Inc., NY, 1958, p. 51):

Duration of Breaking Stress, ksi

stress, Annealed Glass Annealed Glass Tempered Glass

seconds Tested in Air Tested in Vacuum Tested in Air

0.1 20 25 7
1 16 24.5 33
10 13.5 24 31 ‘
100 11 23.5 29.5
1000 9.3 23 28
10,000 8.1 23 27.5
100,000 7.5 23 27
1,000,000 7 23 26.5
10,000,000 6.9 23

Shan§ states that "for loads of indefinite duration, the breaking stresses are
of the order of 40 to 45 percent of the 5-sec breaking stress." The data in
the above table suggests that atmosphere and humidity effects may also play
a role in the static fatigue of glass. There seems to be little or no infor-
mation available on the conventional fatigue of glass.

The strength variability of nominally identical specimens i. somewhat

greater for glass -- especially annealed glass -~ than for metals. In order




to illustrate this variability we give below the probability of breakage as
a function of stress for three types of float glass, as cited in the booklet
entitled "PPG Glass Thickness Recommendations to Meet Architects' Specified

1-Minute Wind Load" (April 23, 1979, PPG Industries, Inc., Pittsburgh, PA

15222).
Stress, psi
Probability Annealed Glass Heat-Strengthened Tempered Glass
of Breakage (coefficient of Glass (coefficient (coefficient of
variation = 22%) of variation = 15%) variation = 10%)
50% 6,000 11,000 23,000
52 3, 800 8,300 19,000
0.8% 2,800 7,000 17,200
0.4% 2,500 6,600 16,600
0.22 2,200 6,200 16,600
0.12 1,900 5,900 15,500

"Flat Glass Technology,'" by Rune Persson (1969, London, Butterworth's, p. 31)
implies the following relationship between pressure and probability of breakage
for a window glass, in which p stands for the median strength, i.e., the pres-

sure giving a 502 probability of failure:

Probability A
of Breakage 502 9.2Z 2.3Z 0.8% 0.4 0.142 0.072 0.02%

Pressure P .67p .50p .40p .33p .25p .20p .10p




Finally, as in the case of metals, temperature has an effect on the
elastic constants as well as the strength of glass. For selected glasses
these effects are described by Shand on pp. 38 and 53 of the earlier
cited reference. It is interesting to note that the effects of tempera-
ture are not always monotonic, and that for some glasses an increase in
temperature causes an increase, rather than a decrease,in the elastic
moduli. Here we cite only the following data on the modulus of rupture

of soda-lime plate glass, as given by Shand:

Exposure Modulus of Rupture, ksi
Conditions to Temperature,
hrs 24 C 205 C 285 C
Annealed 1 14.8 11.4 12.5
Annealed 500 14.8 13.7 12.9
Tempered 1 32.0 29.5 28.7
Tempered 500 32.0 29.0 24.0

Effect of Dissolved Alumina.- A substantial arount of data on the

viscous and electrical properties of glass, particularly as affected by
the dissolution of alumina in the glass, can be found in the following

two tepérts by R.W. Vest of Purdue University's Turner Laboratory for
Electroceramics, in West Lafayette, Indiana:

"Thick Film Glasses,”" 15 Nov. 1978, report prepared for the Naval Research
Laboratory under Contract No. N00173-77-C-0142.

"The Effect of Substrate Composition on Thick Film‘Circuit Reliability,”

28 Peb. 1980, report prepared for the Naval Air Systems Command under
Contract No. NO0019-79-C-0240.
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5. Nickel-Iron Alloys

The nickel-iron-cobalt alloy with the ASTM designation F-15, but possessing
various trade names, of which the best known is Kovar, is frequently used as
the lead-frame, lead-wire, or case material in microelectronic packages.
Representative properties of this material and of two other nickel-iron alloys
that are sometimes used are given in the table that follows. The data pre-
sented in that table are a composite from several sources, including the 1976
"Handbook for Clad Metals'" of Technical Matertals, Inc. (5 Wellington Road,
Lincolﬁ, Rhode Island 02865), the "Nicoseal" data sheet of the Carpenter
Technology Corporation (101 W. Bern St., P.0. Box 662, Reading, PA 19603),
Technical Data Sheet No. 29 of the Teledyne Rodney Metals Company (1357 East
Rodney Freanch Blvd., New Bedford, MA 02742), and the "Uniseal 29-17" and
"Uniseal 42" data sheets of the Cyclops Corp, (850 Washington Rd., Pitts-
burgh, PA 15228). For some of the data average values have been used to

resolve discrepancies among different sources.
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There appears to be no published information on the modulus of rupture
or flexural strength of the nickel-iron alloys. By means of simple cantilever
bending tests on narrow strips cut from commercially available package lids,
the writer has obtained 107 ksi as a typical value of the modulus of rupture
of "Kovar" 1ids® In these tests one end of the strip was clamped in a vise,
and load was applied to the other (free) end through a hand-held force gage,
with the direction of the load constantly changéd so that it remained per-
pendicular to the strip as the strip deflected (see sketch below). The modulus

of rupture o, was easily computed from the measured values of the maximum

b
load Pmax and the distance L between the load and the kink or plastic hinge
which forms at the clamped end, through the formula o = 6 PmaxL/btz, where

b is the width of the strip and t is its thickness. Such tests are recommended

whenever estimates are needed of the modulus of rupture of a lid or base

material.

VISE \

PLASTIC HINGE

*
With a coefficient of variation of 82
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6. Solders

oo e ——

Gold-Based Solders.- Semi-Alloys, Inc. (888 So. Columbus Ave.,

Mt. Vernon, NY 10550) produces a large variety of solder and brazing alloys,
including four gold-based eutectics of possible use for microcircuit package
assembly. From their Technical Bulletin AU-80 and direct telephone con-

tact with individuals in the company, the following data have been obtained

on those four alloys:

Alloy Designation A905 A911 A912 A914
80 Au 88 Au 75 Au 96.9 Au

Composition, Weight X 20 Sa 12 Ge 25 Sb 3.1 si
°C 280 356 360 370

Melting Point |3 536 673 680 698

Thermal Conductivity, 0.60 0.63 0.54 0.68

cal/cm.s-°C ) : ° °

Thermal Expansion

Coefficient, 16.0 12.6 12.9 13.7

1078 /¢

Density, g/cm3 " 14.53

Young's HOdUlUS, R.T. 8.5 12.1

10® pst 100C| 8.8

Tensile Scrength, ksi 44 50

Indium Solders.- The Indium Corporation of America (Utica, NY 13503)

speclalizes in the production of solders containing indium. The following
table gives data on several of those solders (those included in their "micro-
electronics kit") as well as on two of their tin-lead solders (#106, #171),
all of it abstracted from the Indium Corporation booklet entitled "Indalloy

Speciality Solders."
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Tin-Lead and Tin-Lead-Antimony Solders.- In the previous table data

were given on two tin-lead solders of the Indium Corporation. In the

following table are summarized the properties of the tin-lead and tin-lead-

antimony solders of Alpha Metals, Inc. (600 Route 440, Jersey City, NJ 07304).
The information was obtained through the company's literature (Catalog

S/M-62) and direct telephone contact.

Alloy Designation 63/37 | 60/40| sosso | 82 83 64 54 44

83 Sn] 60Sn]| 50 Sa | 55 Sn 527 Sn | 54 Sn | 45 Sn] 35 sa
“(“."1;:‘;‘)’“ 37 P | 40Pb) 50Pb | 42.5Pb) 45 Pb | 44 Pb | 53 Pb| 63.5 P

2.5sb| 3.0sh] 2sb| 2sbl 1.5 s;

Bar Bar Bar Bar Bar
Forms Wire Wire Wire Wire Wire Wire 1
e
T .:f“' 161 361- | 361- | 368- 368- | 368- | 368- | 368~ i
A 374 421 378 382 385 419 | 464
Tensile
Strength, 7000 | 6900 | ssoo | 7800 8000 | 7700 | 6600 { 6000
psi
Shear
St:‘ngth, 5000 | 5106 | 4700 | 6400 6600 | 6400 | 5500 | S000
ps
% Elongation 25-35 | 25-40 | 40-70 | 36-40 36-40
Thermal
Conductivity, R.T. -118
cal/cm-s.°C 140 C .111
Specific | 25-183 ¢ .051
eat
calfg-°c | 216-300 ¢ .046 1




A more extensive survey of tin-lead and tin-lead-antimony solders is
contained in the following table. The data have been compiled from several
sources, including: The Alpha Metals Co.; "Solders and Soldering," by
H.H. Manko (McGraw-Hill, 1964); "Soft-Soldering Handbook," by C.H. Thwaites
(International Tin Research Institute, Frazer Road, Perivale, Greenford,
Middlesex, England; U.S. Office: 1353 Perry St., Columbus, Ohio 43201); the
1976 "Handbook for Clad Metals" (Technical Materials, Inc., 5 Wellington Rd.,
Lincoln, RI 02865); the 1981 "Handbook of Printed Circuit Design, Manufacture,
Components and Assembly,” by Giovanni Leonida (Electrochemical Publications,
Ltd., Ayr, Scotland); and the "Development of Highly Reliable Soldered
Joints for Printed Circuit Boards" (report on Contract No. NAS8-21233,
Westinghouse Defense and Space Center, Aerospace Division, Baltimore, MD,

Aug. 1968; NTIS No. N69-25697.)
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Thermal expansion data in a recent report by B.D. Dunn ("The Resis-
tance of Space-Quality Solder Joints to Thermal Fatigue," European Space
Research & Technology Centre, Noordwijk, The Netherlands, EAS STM-207,
Sept. 1978) raises questions as to the validity of the thermal expansion ;
coefficlents presented in the previous table. Dunn reports the following

thermal expansion coefficients for 63/37 tin/lead solder:

Temperature Range, °C ~100 to 0 [ O to 50 [0 to 100 | -100 to 100

Thermal Expansion Coeff., ;

17.5 16.1 14.7 15.9
107%/°¢

These are somewhat lower than the values given for this solder in the pre-
vious table (including the footnote). In a private communication to the

author, Dunn explains that the difference is probably due to (a) the purity

e

of his solder and (b) the fact that previously reported measurements were

all made on cast bars which were relatively slow-cooled and hence possessed
a large eutectic grain structure, whereas his measurements were performed
on samples cut from fast-cooled castings with a smaller grain structure.

It is believed that the latter specimens (and therefore Dunn's values) are

more representative of a solidified high purity solder joint.

Effects of Temperature and Rate of Testing.- As is to be expected,

the mechanical properties of solders are temperature dependent, and inas-~
much as solders tend to creep, one can expect the mechanical properties to
be sensitive also to the rate of testing, i.e., to the rate at which the
load or deformation is imposed.

For the tensile and shear strengths of 63/37 tin/lead solder, in par-

ticular, the temperature dependence is shown in the following table. In
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this tabulation the tensile data are from the "Handbook of Printed Circuit
Design, Manufacture, Components & Assembly,” by G. Leonida (Electrochemical
Publications Ltd., Ayr, Scotland, 1981), and the shear data are adapted from
the report, '"Development of Highly Reliable Soldered Joints for Printed
Circuit Boards" (Westinghouse Defense and Space Center, Aerospace Div.,

Baltimore, MD, Aug. 1968; NTIS No. N69-25697).

Temperature, Tensile Strength Shear Strength
°C MN/m2 psi MN/m2 _psi
~130 89 12,9500
-60 58 8,300
0 55 8,000
20 54 7.800
25 29 4,300
40 49 7,100
60 44 6,400
80 39 5,700 18 2,600
100 30 4,400
120 21 3,000 12 1,700
140 15 2,100 '
150 8.6 1,300
160 9 1,400
180 .5 70




The following graphs from the "Soft-Soldering Handbook," by C.J. Thwaites,
referred to earlier, show the effect of temperature on the tensile strength

and elongation of several other solders.
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The following graphs from the "Soft-Soldering Handbook,” by C.J. Thwaites,
referred to earlier, show the effect of temperature on the tensile strength

and elongation of several other solders.
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this tabulation the tensile data are from the "Handbook of Printed Circuit
Design, Manufacture, Components & Assembly," by G. Leonida (Electrochemical
Publications Ltd., Ayr, Scotland, 1981), and the shear data are adapted from
the report, "Development of Highly Reliable Soldered Joints for Printed
Circuit Boards" (Westinghouse Defense and Space Center, Aerospace Div.,

Baltimore, MD, Aug. 1968; NTIS No. N69-25697).

Tewmperature, Tensile Strength Shear Strength
°C MN/m2 psi MN/m2 _psi
-130 89 12,900
-60 58 8,300
0 55 8,000
20 54 7.800
25 29 4,300
40 49 7,100
60 44 6,400
80 39 5,700 18 2,600
100 30 4,400
120 21 3,000 12 1,700 i
140 15 2,100 '
150 8.6 1,300
160 9 1,400
180 .5 70
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B.D. Dunn, in the report cited earlier, gives additional data on the

temperature dependence of the tensile properties of 63/37 tin/lead solder,

which 1s reproduced in the table below. Dunn's tests were conducted at the
relatively low strain rate of 1.3 x 10—4 s—l. This strain rate was used in
order to more nearly represent the strain rates associated with thermal

fatigue, and the associated creep effects cause the strengths to be some-

what lower than those obtained in standard tests at higher strain rates.

Temperature Young's Proportional Tensile Permanent
°c Mogulus, Limit, psi St;ength, gizzga;::2ture
10~ psi MN/m psi 9 >
~70 6.96 8240 86.0 12,500 30
-20 6.11 7020 63.9 9,270 20
+20 4.58 5110 46.8 6,790 26
+60 3.83 3260 33.5 4,860 38

Young's modulus values for four solders at three temperatures were
measured by R.W. Rhode and J.C. Swearingen ('"'Deformation Modeling Applied

to Stress Relaxation of Four Solder Alloys," J. of Engineering Materials

and Technology, ASME, April 1980, pp. 207-214). Their results, which are

based on measurement of stress and strain decrements upon unloading from

0.2% total applied strain, are given in the following table.

Young's modulusngo6 psi
Material -51C 25C 71C
63 Sn - 37 Pb 5.25 4.18 3.76
62.5 Sn - 37 Pb - 0.5 Ag 5.34 4.35 4.05
37.5 Sn - 37.5 Pb - 25 In| 5.00 4.50 3.80
50 Pb -~ 50 In 3.76 2.89 2.34
~291-

et St




The strength of a relatively thin butted tensile joint of 63/37

tin/lead solder as a function of temperature and for two different exten-
sion rates is shown in the figure below, which is taken from the paper
"“FPatigue Properties of Solder Joints," by Roger N. Wild , Welding Research
Supplement to the Welding Journal, Nov. 1972, pp. 521-s to 526-s. It will

be noted that the room temperature (25C) tensile strength of the joint is

considerably higher than the previously cited tensile strengths for the
bulk solder. This undoubtedly reflects the rather significant constraint
against lateral contraction for the thin solder in a tensile butt joint
as compared with the relatively free lateral contraction for the bulk
solder in a standard tensile test. In this figure the strain rate effect, 4

which 18 related to creep, is again evident. ‘J

noa

Legand:
® 020 in/min
2 002 in/min

‘Joint Tersile Strength
(M x 20%)
3

25 0 75 100 125
Temperature *C }

Nete the Reduction ia Joint Temile |
Stvength with Higher Temperarures ]
ond Lower Strain Rotes

Additional data on the temperature and strain effects are provided by 1
the following table, wnich gives shear strength values for six different 3

soldered joints at 20C and 100C obtained at the very low strain rate of r\

.05 sa/min. The table Is taken from the "Soft Soldering Handbook," by

C.J. Thwaites, referred to earlier.




: in Shear Strength Loss in strength
Nomina! Composition % MN/m2 (1bt/in2) st (20°~100°C)
Sn Pb Sb Ag 20°C 100°C

80 40 - - 20 (2840) 13 (1850) 35%
10 90 -~ - 17 (2420) 11 (1560) 35%
62 36 - 2 28 {3980) 12 (1710) 57%
40 58 2 - 24.(3410) 11 (1560) 54%
95 - 5 - 28 (3980) 14 (1990} 50%
5 93.5 - 15 18 (2560) 12 (1710) 33%

It will be noted, for example, that the shear strength of tne 60/40 tin/lead

solder at 20C is appreciably below that given in earlier tables for the same

solder at normal testing rates.

Creep Rupture and Stress Relaxation.- Under a steadily maintained

load solder will creep and eventually rupture, especially at higher tem~
peratures. A small amount of data is available on this phenomenon. Some
of it is reproduced in the two figures below. The figures are taken from
the carlier cited works of Wild and Thwaites, respectively. Both figures
are for lap shear joints; the first applies to a 63/37 tin/lead solder,

the second to a 95/5 tin/silver solder.

10,000

A A A 3 2008

s

Shear Stress (Psi)
8

100 e ———————rrvy r—————rrrrm
0 100 1000 10,000
Failure Time (Min)

Stress rupture properties (Sn-Pb eutectic soider)
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TIME TO FARURE h

Stress — time to failure curves at various temperatures for overlap joints
between brass components soldered with 95% tin-5% silver slioy.

Closely related to creep is the phenomenon of relaxation, that is, the con-
tinual reduction in stresses or load while the deformation is held constant.
The following figure which is taken from the paper by Wild, pertains to a
lap shear jolnt and shows the relaxation of load (ordinate) with time if the
joint 1s initially loaded to 902 (solid curve) or 40% (dashed curve) of its
static strength and the resulting initial deformation is maintained through-

out the test. 100

Joint Shear Streagth
(Peicent)
8

1 20 40 60
Time in Minytes

Nate Joint Reloxsation i Very Ropid,

Especially at the Higher lnitial Joint

Loodings

Stress relaxation properties -
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Fatigue.- Solders, like most other metals, are vulnerable to fatigue.
The next three figures, from the paper by Wild, provide some data on the
fatigue life (cycles to failure) of three types of 63/37 tin/lead solder
joints. The first figure pertains to a lap shear joint tested at 5 cycles
i per minute (CPM). The second figure pertains to a "pin-in-hole" joint
loaded so as to produce ''tensile shear” in the solder, and the third to
a similar joint loaded so as to produce "compressive shear." The effect

of loading rate (CPM) is clearly visible in the data of the second figure: 1

the slower the loading rate, the shorter the lifetime (as measured in
cycles). A great deal of additional data of the same kind covering

additional temperatures and additional solder compositions, can be found

in the report "Some Fatigue Properties of Solders and Solder Joints," by
R.N. Wild, IBM Report No. 73200421, IBM Electronic Systems Center, Owego, NY,

January 1973.
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7. Wires

Gold of 99.992 purity and aluminum with 12 silicon or 1X magnesium
are materials frequently used for the fine internal wires in microcircuit

"as drawn'") con-

packages. These wires can be supplied in the hard (or
dition or in various annealed states. The annealing reduces the ultimate
tensile strength by an amount that depends on the degree of annealing

and, in the case of gold, significantly increases the ductility, as
measured by the elongation at failure in a tension test with a 10-inch
gage length.

The following information from one supplier, the Consolidated
Refining Co., Inc. (115 Hoyt Ave., Mamaroneck, NY 10543) will give some
idea of the tensile strengths and ductilities obtainable in gold and
aluminum fine wires. (Other suppliers include the Sigmund Cohn Corp.
of 121 S. Columbus Ave., Mt. Vernon, NY 10553 and the Secon Metals Corp.
of 7 Intervale St., White Plains, NY 10606). The range of breaking
loads and elongations shown for any given diameter indicates the varia-
tions achievable through alteration of the annealing conditions and
other manufacturing parameters. The manufacturing parameters can actually
be so controlled as to permit the elongations and breaking loads to be
specified to within much narrower limits than the table suggests. For
example, for 0.001-in. aluminum wire with 1% magnesium, one may specify
the breaking load to lie between 15 and 17 grams and the elongation to

be between 1 and 3%.
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Gold, Hard Cola, Annealed Aluminum

Roainal 2 Elonga- | Min. 2 Elonga~ | Min. X Elonga- Breaking Loads,
Dliameter, | tion Breaking tion Breaking tion grams
in. Load, Load,

grams grams 1 Si 17 Mg
0.0005 0.5-1.5 3 1-3 1 0.5-2.0 1-5 1-5
0.0007 0.5-2.0 6 1-7 2 0.5-2.5 3-12 4-12
0.0008 0.5-2.0 8 1-8 3
0.0009 0.5-2.0 13 1-8 4
0.001 0.5-2.5 17 1-12 5 0.5-3.5 12-22 12-24
0.0012 0.5-5.0 14-30 14-30
0.00125 0.5-5.0 15-32 18-36
0.0015 0.5-2.5 35 1-15 12 0.5-5.0 20-50 25-60
0.002 0.5-3.0 70 2-20 20 1-5 40~90 45-100
0.003 0.5-3.0 150 4-25 45
0.005 0.5-4.0 420 5-25 120

Typlcal curves of load vs. elongation for gold and aluminum wires of 0.001-in.
diameter are shown in the following graphs. In these graphs, the X's represent
the breaking points, and the nominal ultimate tensile strength (UTS) corresponding
to each one is marked near the X. The graphs show clearly the significant
reduction in strength and increase in elongation produced in gold wires by
annealing. The nominal young's moduli of gold and steel are 12,000,000 and
10,000,000 psi, respectively. However, these values are based on the initial
slopes of somewhat curving stress-strain curves. A better representation of
the load vs. elongation behavior depicted in the graphs for loads up to about
2/3 of the breaking load can be obtained by using reduced moduli of around

10,000,000 and 9,000,000 psi, respectively, for gold and aluminum.
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APPENDIX B: FLEXURAL ANALYSIS OF A TWO-COMPONENT COMPOSITE PLATE j

Here we consider a composite plate made up of two isotropic elastic
plates bonded together, as shown in Figure 1. The two components may have

different properties, so we denote by E1 and i the Young's modulus and

Poisson's ratio of the upper plate, and by E2 and v, the corresponding

quantities for the lower plate. The thicknesses of the two plates are tl :

and tz, respectively, and t = tl + t2 will denote the combined thickness.
Figure 2 shows a unit segment of the plate acted upon only by

bending moments of intensity (e.g., in.-1b/in.) Mx in the x-direction and

Hy in the y~direction. These will produce curvatures Kx H -Bzwlaxz and

2 in the two directions, where w(x,y) represents the deflec-

2
K = -3%/3
v y
tion surface of the plate. In this appendix equations will be developed
showing how the curvatures Kx and Ky are related to the bending moments j

Hx and My. Formulas will also be developed for the extreme-fiber cross-

sectional normal stresses in the two components at any location in terms i

of the bending moments Mx and My at that location. Finally, it will be
shown how existing information for homogeneous (single component) plates
can be used to obtain the bending moments in a two-component plate.

This appendix presents only the basic theory of two-component plates.
Application of that theory to flatpack bases consisting of Kovar with a
ceramic substrate bonded to it 1s discussed in Chapter 1, Section V, and

demonstrated in Chapter 1, Section VIII.
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Figure 2.- Bending moments on infinitesimal segment.
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1. Notation.- Short-hand symbols will be employed to represent

certain parameter combinations that will arise naturally in the course

of the derivations. These symbols are shown and defined as follows:

I
E .t 3 E.t 3 .
. 11 272
Dy * ; by 2 ¢ S
12(1-v. ) 12(1-v,")
1 2
5. (Eltl)(Eztz) @

(Eltl + Ezcz) .
|
|

- . leZtZ + UZEItl . ;
Ezt + Eltl i
2 /1-v. v 1-v.v -1 2 =
3 4 Eltl Ezt? 4 l_\-)z
DED1+D2+D3 (5)
LS v 4
D' = JlDI +v,0, + vD3 (6
v = D'/D (7

In addition, we call attention to the notation in Figure 4 that will be

used for the extreme-fiber cross-sectional normal stresses (positive for

tension) in the individual components. The logic behind the subscripts

in the symbols ox , 0x , etc. will undoubtedly be obvious to the reader.
11 12

2. Moment-Curvature Relations.- Figure 3 shows the bending moments

per unit width Mx , M M | M | and middle~surface membrane forces

1 %2 Y Y2

per unit width Nx and Ny, in the individual components. It will be noted




Pigure 4.- Notation for extreme-fiber normal stresses in individual components.
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that the latter are shown as tension in one component, compression in the

other, so that on the cross sections as a whole there are no resultant

forces, only resultant couples.
Prom the static equivalence of Figures 2 and 3, we have the following

expressions for those resultant couples:

(8)

We shall now imagine the curvatures Kx and Ky to be imposed and get expres-

sions for the M. , M , M , M , N and N vresulting from that imposition.
o*¥ Y Yz % y

Substitution of those expressions into Equations (8) will then give the

moment-curvature relations for the composite., The details follow:

From the moment-curvature relations for the individual components,

we have i

Mxl = D1 (Kx + ley) Myl = Dl (Ky + lex)
9
Mx = D2 (Kx+v2Ky) My = D2 (Ky+v2Kx)
2 2
1
Continuity of x-wise strain and of y-wise strain at the interface of the )
two components requires that %
N - v.,N t N - v N t
- __—lx 1 + K .—1: ———zx 2 _K _g
E .t x 2 E t x 2 1
11 272
(10)
N -wv t N - v N t
- Y lx e 1oy 2x L 1 N
E,t, y 2 E,t, y 2 N
!
d
:
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Solving Equations (10) simultaneously for Nx and Ny gives

(11)

Substitution of these expressions along with (9) into Equations (8) gives
Mx - D(Kx + va) My = D(Ry + va) (12)

as the moment-curvature relations for the composite, where D and v are
defined by Equations (5) and (7). It will be noted that Equations (12)
are exactly the same as the moment-curvature relations of a homogeneous
isotropic elastic plate (p. 81 of Reference 3, allowing for a difference
of sign convention on w), except for the new definitions of D and v.

These new definitions reduce to the usual ones when El = E2 and vl a vy

2!
as they should.
Equations (12) can be inverted to give the curvatures in terms of

the bending moments:

M - VM M - WM
Kx - _"__Z_X K = _Y__z.’S {13)
D(1-V°) Y p(1-v)

From this result we note that where Ky = (0, as it is along an x-wise

supported edge, My and Mx have the following relationship:

Hy = va (14)




3. Stresses.- Any of the extreme-fiber stresses shown in Figure 4
can be obtained by superimposing the stress due to the membrane force and
that due to the bending moment for the component in which the stress

resides. Thus, referring to Figures 4 and 3 together, for the cross sec~

tion normal to the x-axis we have

Q
[}

2
u - (Nx/tl) - (6 Mxl/tl )

Q
]

2
12 - (Nx/cl) + (6 Mxl/t1 )
(15)
2
x,1 (Nx/tz) - (6Mx2/t2 )

Q
L}

2
22 (Nx/tz) + (6Mx2/t2 )

Q
[}

The corresponding equations for the cross section perpendicular to the

y~-axis are obtained by replacing every x by a y in the above.

Substitution of (9) and (11) into (15) gives the stresses in terms

of the curvatures in the following form:

(o} 9
x -
11 . s K, *+ VK : Ejty K+ VK
o LA R 2 1 - le
12
(16)
a
%2 w = K +VK E.t., K + v.K
- St x Y 3 272 X 2y
o 26 1 -3 2 1- v22
22

Replacing every x by a y and every y by an x, we can get the corresponding

expressions for o , O , O and o
Y11 Y12 Yz Y22
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It will usually be more convenient to have the stresses expressed in
terms of the bending moments Hx and My’ rather than in terms of the curva-
tures Kx and Ky' Therefore we shall use Equations (13) to eliminate Kx

and Ky in (16). The resulting stress formulas are

o
x. - - -
11 . EE_ Hx(l—vv) + My(v-v) _ Elt1 Mx(l-vvl) + Hy(vl v)
o 2t p1-v¥)(1-v2) 2 p(1-vd)(1-v,2)
x 1
12
(17)
LA _ _
21 . _SE. Mx(l-vv) + My(v-v) : Eztz Mx(l—vvz) + My(vz—v)
o 2t p1-v3) (-39 2 pa-vHa-v,%
x,, 2

and the corresponding formulas for the oy stresses are obtained by replacing
every x by a y and every y by an x.

If Mx = My, as it does at the center of a square plate 1if the boundary
conditions and loading are properly symmetric, the stress equations reduce

to

x y -

11 11 . M ) St : Eltl
o, =0 D(1+v) 2t1(1-v) 2(1—v1)

12 Y12

(18)

Ox id Gy

21 21 . M St : Eztz
o =g D(1+v) 2t2(1—v) 2(1-v2)

22 Y22

where M 18 the common value of Mx and My.




4. Use of Existing Data.- The fact that the moment-curvature rela-

tions for the two-component plate have the same form as for the homogeneous
plate means that any bending moments and deflections known for the latter,
and expressed in terms of D and v, will also be valid for the former,
provided that D and v are evaluated by means of Equations 5 and 7. Thus,
much of the existing data for isotropic elastic plates can be taken over
bodily and applied to two-component plates. For convenience we are pre-
senting some of this existing data in Tables 1, 2 and 3. These tables
give central deflection and bending moments at certain locations for
plates with various boundary conditions subjected to a uniform pressure
in the downward direction (i.e., in the w-direction of Figure 1). All
of the information in these tables 1s taken from the treatise by Timo-
shenko and Woinowsky-Krieger, Reference 3, supplemented by Equation (14)
of this appendix.*

The deflections given in these tables are valid for all values of v,
but as noted in the tables, the bending moments were computed for v = 0.3
and therefore, strictly speaking, are valid only for that v. The error
will usually be very small if the bending moments in the tables are
assumed to be valid for other valves of v as well. However, if desired,
one can readily calculate corrected bending moments, M'x and M'y, if v
has a value other than 0.3. The corrected moments at any location can
be obtained from the tabulated moments, Mx and My, for the same location

via the following formulas (from p. 97 of Reference 3):

*
Material from Reference 3 is used with the permission of McGraw-
Hill Book Company.
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1
- o1 [(l-.3\))Mx + (\)-.3)My]

“O
(19)
1
' —_— - + -
M y 31 [(1 .3\))My (v 3)Mx]
If Mx - Hy = M, these formulas reduce to
}

1tv M (20)

= 1 ' = ! =
If v .3, they reduce to M x Mx, M y My, as they should.

e Ao v, e
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: Table 1.- Deflections and Bending Moments in a Uniformly Loaded Rectangular
} Plate with All Edges Clamped
4
b Bending Moments (for v = 0.3)
3 Central
Deflection, At Center of Plate At Middle of Longer Edges
§ M M M M
X y X y
1.0 | 00126 pat/p | .0231 pa® | .0231 pa’ | -.0513 pa’ | -.0154 pa’
11 | 00150 pa®/D | .0264 pa? | .0231 pa’ | -.0581 pa’ | -.0174 pa’
1.2 | 00172 pa®/p | .0299 pa’ 0228 pal | -.0639 pa? | -.0192 pa’
4 2 2 2 2 :
1.3 | .00191 pa*/D .0327 pa .0222 pa -.0687 pa -.0206 pa 1
1.4 | .00207 pa*/D .0349 pa’ .0212 pa’ -.0726 pa’ -.0218 pa’ ‘i
1.5 | .00220 pa®/D .0368 pa’ .0203 pa’ -.0757 pa® -.0227 pa’ ‘
1.6 | .00230 pa*/D .0381 pa? .0193 pa’ -.0780 pa’ -.0234 pa’
1.7 | .00238 pa*/p .0392 pa’ .0182 pa’ -.0799 pa’ -.0240 pa’
1.8 | .00245 pa®/D .0401 pa’ .0174 pa’ -.0812 pa’ -.0244 pa’
1.9 | .00249 pa*/p
2.0 | .00254 pa®/D
= | .00260 pa®/D




o e

Table 2.- Deflections and Bending Moments in a Uniformly Loaded Rectangular

Plate with All Edges Simply Supported

Central

Bending Moments at Center of Plate

b Deflection, (for v = 0.3)

a 8 M M
1.0 .00406 pa”/D .0479 pa’ .0479 pa’
1.1 .00485 pa’/D .0554 pa’ .0493 pa’
1.2 .00564 pa”/D .0627 pa? .0501 pa’
1.3 .00638 pa’/D .0694 pa’ .0503 pa®
1.4 .00705 pa’/D .0755 pa’ .0502 pa’
1.5 .00772 pa®/D .0812 pa’ .0498 paZ
1.6 .00830 pa’/D .0862 pa’ .0492 pa’
1.7 ,00883 pa’/D .0908 pa’ .0486 pa’
1.8 ,00931 pa’/D .0948 pa’ .0479 pa’
1.9 .00974 pa/D .0985 pa’ .0471 pa>
2.0 .01013 pa®/D .1017 pa’ .0464 pa’
3.0 ,01223 pa’/D .1189 pa’ .0406 pa’
4.0 .01282 pa’/D .1235 pa’ .0384 pa’
5.0 .01297 pa®/D .1246 pa’ .0375 pa’

- .01302 pa*/p .1250 pa’ .0375 pa’
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Table 3.- Deflections and Bending Moments in a Uniformly Loaded Rectangular
Plate with the Long Edges Simply Supported, the Short Edges Clamped

Bending Moments

(for v = 0.3)

b Central At Center of Plate At Middle of Clamped Edges
a
Deflection,
M M M M
8 x y x y
4 2 2 2 2 ]
1.0 | .00192 pa /D .0244 pa .0332 pa ~.0204 pa -.0697 pa
1.1 | .00251 pa*/p .0307 pa’ .0371 pa -.0236 pa’ -.0787 pa’
1.2 | .00319 pa®/D .0376 pa’ 0600 pal | -.0260 pa? | -.0868 pa’
1.3 | .00388 pa®/p .0446 pa’ 0426 pal | -.0281 pa’® | ~-.0938 pa’
1.4 | .00460 pa”/D .0514 pa’ .0448 pa -.0299 pal | -.0998 pa’
1.5 | .00531 pa®/D .0585 pa .0460 pa -.0315 pa’ ~.1049 pa’
1.6 | .00603 pa*/D .0650 pa’ 0469 pa? | -.0327 pa? | -.1090 pa’
1.7 | .00668 pa*/D .0712 pa’ 0475 pa? | -.0337 pa? | -.1122 pa’
1.8 | .00732 pa*/D .0768 pa .0477 pa -.0346 pa? | -.1152 pa’
1.9 | .00790 pa®/p .0821 pa’ .0476 pa’ -.0352 pa’ -.1174 pa®
2.0 | .00844 pa’/D .0869 pa .0474 pa’ 0357 pa® | -.1191 pa’
3.0 | .01168 pa”/D .1144 pa’ 0419 pal | -.0374 pa? | -.1246 pa’
» | .01302 pa®/D .1250 pa’ .0375 pa’ -.0375 pa’ -.1250 pa’

oy




APPENDIX C: APPROXIMATE RESPONSE OF AN ELASTIC FLAT PLATE
TO A PRESCRIBED MOTION OF ITS BOUNDARY

In this appendix a simple approximate "one-term" analysis is presented
for the elastic small-~deflection flexural response of a flat plate to any
prescribed translatory motion of its boundary supports in a direction normal
to the plate. The simplicity of the analysis is due to the assumption that
at every instant the deflection of the plate, relative to its supports, is
that which would be produced by some uniform lateral pressure p. The out-
come of the analysis is a differential equation that can be solved for this
"equivalent lateral pressure" as a function of time, p(t). For an illus-

trative application that is relevant to a flatpack in a flatwise impact,

the theory is applied to a vertically falling horizontal plate with its
boundary brought to rest by a suddenly imposed constant deceleration. Such
a plate is an approximate representation of the base in an upside~down

flatwise drop test or of the lid in a righteside-up flatwise drop test.

1. Notation.- The symbols E, v, h, and p will denote the Young's
modulus, Poisson's ratio, thickness and density of the plate, respectively
(with h being used for thickness instead of t, so that t may be used for
time); alsom = ph and D = Eh3/[12(1-v2)] will denote the mass per unit
area and plate flexural stiffness, respectively. If the plate is a two-
component composite of the kind treated in Appendix B, with properties

Elp\"hrp + h

1 1" "1
ponent, D and v must be redefined by Equations (S5) and (7) of Appendix B,

in the upper component and E2' v ’ 02 in the lower com-

2 2

and m must be evaluated as p.h, + p.h

1t oy (Note that the symbols h

1 and h2

are being used here in place of the symbols t., and t2 of Figure 1 of

1
Appendix B.)
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The fundamental circular frequency of the plate will be represented by
wn, and T = wnt will be a dimensionless time parameter, with t the real time.
In the illustrative application, Vo will denote the velocity of descent of
the plate just prior to the onset of the constant deceleration of the
supports, and ts will denote the "stopping time," i.e., the duration of the
deceleration. Thus, vo/ts will be the magnitude of the deceleration, and
ts = wnts will be the dimensionless stopping time. The results will be in

terms of a dimensionless equivalent lateral pressure Q, defined by

Q(t) = p(t)/mw v . Other symbols will be introduced and defined as needed.
no

2. Analysis.- The undeflected middle surface of the plate is imagined
to be parallel to the horizontal xy plane of a stationary Cartesian reference
frame, and the boundary support translations and elastic deflections of the

plate relative to its boundary supports are taken to be positive in the 2z

direction, which is normal to the xy plane and imagined to be downward.
The total displacement w(x,y,t) at any point (x,y) of the middle sur-

face at any time t will be approximated by

wix,y,t) = wo(t) + wl(x.y.t)

- vo(t) + p(t) fix,y) (1)

whare wo(t) is the prescribed translation of the boundary supports;
vl(x,y,t) is the deflection relative to the boundary supports; £(x,y)
is the static deflection the plate would experience, relative to its
boundary supports, due to a unit uniform downward lateral pressure; and
p(t) is an amplitude function. Inasmuch as f(x,y) is the deflection due

to a unit lateral pressure, the amplitude function p(t) may be regarded
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as an "equivalent lateral pressure,” that is, as the lateral pressure
which, if applied statically, would give the plate the same deflection
(relative to its supports) as it has at time t in its dynamic state.

Using dots to denote differentiation with respect to t, we may

write the kinetic energy (KE) as

KE = %-m II w2dxdy

-1 9 2+ 2w pf + P22 (2)
70 I[ (w° + 2w°pf + Pf£<)dxdy

Assuming small deflections (no middle-surface stretching) the strain

energy (SE) is

32w 2w 2 32w, 22w 32w, 2
seelp ([ (gt v =B - 20V 5 ot - (o) Dlaxdy
2 3x oy aIxt ay* Ixdy
= 2 p p? 3)
7 D pP?I) (
where
= 2 - 20- - £2 d
I, ”[(fxx + fyy) 2(1-v) (fxxfyy xy)]dx y

4
If(f + 2fxxyy + £ )£ dxdy (4)

In Eq. (4) subscript notation has been used for partial derivatives of
£, and the second line has been obtained by integrations by parts in the
first line, taking into account the fact that f exactly satisfies the
i boundary conditions (the procedure is described in pp. 88-92 of Ref. 3).
Prom expressions (2) and (3) the Langrangian, L = KE - SE, may be

formed, from which the following expressions are obtained:
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d L d IKE I -

S (2 = — (& = dxd (5)

ac ( E.)) ac (Qp ) m f[ (wo + p £f)f dxdy

_ 3L _ 3SE | (6)
3q 3q Dle

Lagrange's equation,

a ,dL L
— (<Y -==0 (7
dt (ap) 3p

then yields the followina differential equation governing p(t):

- 2 L L
p + wn P : 9012/13 (8)
where I, = [ £ axay, I, = /] £2 axdy, and
w = VDIl/mI3 (9)

is the Rayleigh approximation to the fundamental circular frequency of
the plate based on the assumed mode f(x,y).

Explicit evaluation of the integrals and I can usually

Iir I 3
be avoided, and Eq. (8) simplified, through the following expedients:

Pirst, because f(x,y) is the static deflection due to a unit uniform
lateral pressure, the conservation of energy principle (external work =
strain energy) may be invoked to write %-ff f(x,y)dxdy = % DI}’
whence I2 = DIl, and the differential equation (8) is reduced to

B+ u: p = - mw®

no




Secondly, if the plate is one whose exact fundamental frequency is already

known (e.g., given in Ref. 10, it is suggested that the approximate w
defined by Eq. (9), be rerlaced by the exact wo . (There should be

little error in this substitution, inasmuch as the static deflection
under uniform preséure is usually a good approximation to the fundamental
vibration mode for purposes of the Rayleigh method.) Finally, a reduction
in the number of parameters can be effected by putting Eq. (10) into the

dimensionless form

‘.i
%0 .. _o
dr2 to-= w v

no

(11)

where T = wnt is a dimensionless time and Q = p/mmnvo, with v, any
reference velocity, is a dimensionless "equivalent pressure” parameter.

In the following illustrative application, A will be taken as the velocity
of descent of the falling horizontal plate just prior to the onset of the

constant deceleration of its boundary supports.

3. Illustrative Application.- We now consider a horizontal plate in

a vertical free fall, and assume that at time * = 0 a constant deceleration
of magnitude vo/ts is suddenly imposed on its boundary supports, bringing
them to rest in the "stopping time" ts from the .nitial velocity vo. For
this case, with Ts = wnts denoting the dimensionless stopping time, the
right side of Equation (11) reduces to l/rs for 0 <1 < Ts and 0 for t > T

The solution of Equation (11), subject to the initial conditions

Q = dQ/dt = 0, is then




Q= (1 - cos t)/f. for 0 <t < {12)

Q= [cos (1 - Ts) - cos t]/ts for T > T (13

If the arrest is instantaneous (rs = 0), the right side of Eq. (1l1) is
zero for t > 0, and the jump condition dQ/dt =1 at T = O+, obtained
by integrating Eq. (11) from T = O0- to 1 = O+, replaces the initial

condition dQ/dr = 0. The following solution is then obtained:
Q=s8sint for T >0 (14)

Equations (12}, (13) and (14) have been used to plot the graphs in
Pigure 1, which show the elastic response of the plate (as measured by
the dimensionless equivalent pressure Q) to the deceleration of its
supports for several values of the dimensionless stopping time Ts'

From the positive and negative peaks of such graphs, the curves of
Pigure 2 were obtained. The solid and dashed curves in this figure give,
respectively, the magnitudes of the maximum positive (i.e., downward)
response and maximum negative (upward) response, as functions of the
dimensionless stopping times L the response in both cases being
expressed in terms of the dimensionless equivalent pressure Q.

Pigures 1 and 2 are quite general, in that no assumption has been
made as to the planform of the plate or its boundary conditions. We
shall now further specialize the present application to the case of a
homogeneous square plate with clamped edges and seek information about

the maximum flexural stress ¢ (occurring at the midpoints of the edges)

and central deflection we (relative to the boundary) resulting from any

given stopping time ts. For a square plate with clamped edges it is known,
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from Table 4.30 of Reference 10 *hat w = 35.987/D/ma" , where a is the

length of a side. For such a plate under uniform lateral pressure p, it is

also known from p. 202 of Reference 3, or from Table 1 of Appendix B, that

o h2/6pa2 = .0513 and w D/pa4 = .00126, whence
max c

b h2/6(.0513)a2 =w D/.00126a4. Thus the parameter Q = p/m V
max c n

p o

can be interpreted as

.3128 o 6.37 w h 3
Q= max _ [o] /E'

v_7E'p v a2 P

=] o

wvhere E' = E/(1-v?); consequently, o and w, are given by

(o4 = 3,20 v_YE'p - Q
max o

.1587 v a2 —

h E'

where Q is read from the solid curve in Fig. 2. We note that ¢
and w, are both proportional to the initial velocity vo, and that
for instantaneous or near-instantaneous arrest (Q = 1) ¢ does
n,t depend upon the dimensions of the plate, according to the present

analysis.

In order to facilitate such calculations for clamped rectangular plates

that are other than square, we present in FPigure 3, a graph of wn/ma“/D

as a function of a/b for clamped isotropic rectangular plates of width a
and length b (based on the data in Table 4.30 of Reference 10). For

simply supported plates, the fundamental circular natural frequency is given

by the formula :

w = 72 (1 + (a/b)2] vD/ma" (15)

-321-




*(ssaujjris [RANX3T} Wumﬁa = ( ‘eaie 3jun i13d sseuw
xein8ueioax padweyd 3o

(*01 @duaiajsy uy elEp UO pIseq)

= w ‘Yaduar = q ‘YIpym = €) 2ajerd
m Kduanbaij [eanieu ie[noxyo Tejuvawepuny ujuymaalap 103 ydeig --¢ 2an3yg

=322~




APPENDIX D: TRANSISTOR THERMAL STRESSES DUE TO INTERNAL HEAT GENERATION

By R.W. Perkins

1. Introduction.- The objective in this appendix is to conduct a pre-
liminary study to obtain an approximate understanding of the thermal
stresses that may occur in a transistor device. The problem was proposed
by Mark ievi of the Rome Air Development Center. The physical situation
is illustrated by ?igure 1 which shows a typical part of a transistor
device. The sllicon transistor is in contact with a copper heat sink at
the bottom. Above the silicon is an aluminum conductor and a polyimide
film. The aluminum conductor can be described as a cylinder having a
diameter and a height of approximately one micron. Above the cylinder is
a much larger diameter plate of aluminum with a thickness of abtout one
micron. The total thickness of the polyimide film is approximately two

microns. The silicon wafer is approximately 250 microns thick.

The transistor heats up as a result of the current flow and voltage
drop that occurs in the p-doped region. The current density is assumed

3 amp/cmz, and the voltage drop 0.6 volts. The

to be approximately 5 x 10
duty cycle is unknown. The ambient temperature of the heat sink can lie
in the range -55°C to 125°C.

Units such as the one described above are assumed to exist in some
sort of pattern over the surface of the silicon wafer.

The problem of determining the thermal stresses that are present during
the use cycle of the transistor device described above is quite complicated.

With the additional specification of a specific geometry and an actual

duty cycle, the problem would be amenable to solution by a finite element
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or a finite difference method. For purposes of making a preliminary

analysis a highly simplified one-dimensional problem was formulated and
subjected to analysis.

For the purpose of the approximate analysis, the most serious stress
problem was assumed to be one that would put the cylindrical aluminum con-
ductor in tension since such a stress might be expected to lead to failure
of the conductor and loss of the electrical function of the device. The
tensile loading might be expected to cause failuE? either due to one
occurrence of a stress large enough to cause rupture of the aluminum or
due to the finite cycling of the aluminum cylinder in tensile strains that
occur as a result of thermal cycling of the device.

It is recognized that tensile and shear stresses occur at the poly-

imide film aluminum and silicon interfaces and that failure may occur at

these interfaces. Fallures of this type are assumed to be relatively unim-
portant because they would not resu.it in loss cf the electrical function,

therefore, stressing of this type is neglected in the analysis.

An initial investigation of the problem suggests that serious tensile
stress will occur in the cylindrical aluminum conductor when the temperature
of the polyimide film rises because the polyimide has a higher coefficient
of thermal expansion than that of the aluminum. Thus, as the temperature
ot the device rises, the polyimide is restrained from free expansion 1in
the vertical direction by the aluminum plate and the aluminum cylinder.

The present report is based on this approximate model. It consists of two
parts: (1) Given the temperature of the polyimide film and the aluminum
plate and cylinder, estimate the stress in the aluminum cylinder.

(2) Approximate analysis of the temperature rise of the polyimide film

and aluminum parts.




2. Thermal Stress Analysis.- The model for the thermal stress analysis

is shown in Figure 2. The model assumes a one-dimensional problem with uni-
form temperature rise in the aluminum, TA’ and a possibly different, but

uniform, temperature rise in the polyimide, T The coefficients of thermal

P*

expansion are designated a, and a

A for the aluminum and polyimide materials

P
respectively.

The cylinder of aluminum with diameter d and length % is assumed to
restrain the free expansion of the polyimide cylinder of diameter D and
length £. Within the stressed region, the strain of the aluminum and the
polyimide are equal. Taking force equilibrium into account and with the
use of the one-dimensional thermoelastic constitutive relations for the

aluminum and polyimide, the stress in the aluminum, ¢, can be calculated

from

g aply, - o, T,
9 . (1)
E, E,

1+

2,.2

Here EA’ EP represent the Young's moduli of the aluminum and polyimide,

respectively. The temperature rise TA or TP must be referenced to a

temperature for which the assembly is stress-free.
Relation (1) is based on the assumption that uPTP is greater than

QATA in order that the aluminum stress o be tensile. If this condition is
not met and the stress ¢ were compressive, then a tensile stress would be
transmitted through the polyimide-aluminum interface. Fallure associated
with this possibility is not considered in the present analysis. It is

expected that such a failure would not result in loss of electrical func-

tion and 1s therefore probably less serious than failure in the aluminum

cylinder.
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Relation (1) 1s also based on the assumptions that E and o are inde-
pendent of temperature and that the stress in the aluminum is less than
the yleld point stress. The assumption of constant E and a values
restricts the magnitude of the temperature change T. If E is constant
over the temperature range of inte.est, then the average value of a over
the temperature range should be used in (1). After the yield point stress
is reached in the aluminum, further temperature rise will result in the

development of plastic strains in the aluminun.

3. Temperature Analysis.- The model for the temperature analysis

is shown in Figure 3. The model assumes that heat is generated at the
aluminum-silicon interface. A one-dimensional conduction model is assumed
with a linear temperature variation from the upper surface temperature TP

to the temperature TS of the heat sink. It i1s assumed that the tempera-

ture of the polyimide and the aluminum is uniform and is the same as the

upper surface temperature TP'

Denoting T = TP - T., and P the average power generated at the inter-

S

face, it is found that the maximum temperature Tmax is

Tmax 2 (2)

where ks is the thermal conductivity of silicon. Some of the material

properties information is provided in Table 1.
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4. Discussion.- In order to obtain some idea of the thermal stresses
that may be expected, the results obtained for two specific cases are
shown in Table 2. In Case I, a distance of 200 microns is assumed between
typical heat generating stations. In this case, the temperature rise is
less than one degree centigrade, and therefore, the thermal stress is
essentially zero. Case II differs from Case I by closing up the spacing
between heat generating stations. In this case, the maximum temperature
rise is found to be 22°C.

In order to estimate the thermal stress in the aluminum corresponding
to this temperature rise, assume that the temperature of the heat sink is
20°C and that the system is stress-free at that temperature. In accordance
with the assumption of the temperature model, the temperature rise of the
aluminum and that of the polyimide will be equal. The value of TA’ which

is equal to T in equation (1) is equal to Tmax' The corresponding estimate

P
of the thermal stress for this temperature range is found to be 7,040 psi.
If, on the other hand, the stress free temperature is lower than the
temperature of the heat sink then the value of TA or TP would be greater
than '1‘max and the corresponding estimate of the thermal stress would also
be greater than 7,040 psi. For example, suppose that the temperature of

the heat sink is 60°C but the stress-free temperature remains 20°C. With

all other conditions the same, the temperature rise TA would be 62°C and the

corresponding thermal stress would be 19,840 psi.




As 1llustrated by these two examples, one may expect insignificant
stresses to exist if the spacing is large while one can expect stresses
high enough to cause fallure when the spacing is close. Unfortunately,
the large spacing case probably greatly underestimates the actual tempera-
ture rise.because of the assumption of a one~dimensional mbdel. The small
spacing example may be taken as a suggestion that serious stressing may
occur.

It is recommended on the basis of the results of the small spacing
example that a more refined analysis be carried out. It is felt that a
finite element or finite difference numerical method applied to an axi-
symmetric model of essentially one typlcal station would yield acceptable
results. Conclusions regarding the seriousness of the thermal stresses

should be postponed until the more refined analysis can be performed. ]
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TABLE 2. CALCULATED RESULTS FOGR TWO SPECIFIC CASES

Assumed Data Case 1 Case 11
P 3x1070 W 3x 103w
h 2 x 10_6 m 2 x 10-6 m
H 250 x 1078 m” 250 x 1078 m
d 1x10°%nm 1x10°%n
D 100 x 1070 o 10 x 10 o
v 200 x 10°% m 20 x 108 m

Calculated Quantities

Maximum
Temperature
Rise ! 0.22 °C 22°C
Thermal Stress, g 2 essentially zero 7,040 psi
g 3 essentially zero 19,840 psi
1 T calculated from equation (2)
max

2 Thermal stress calculated from equation (1) when the temperature of
the heat sink is assumed to be 20°C and the assembly is assumed to be
stress-free at that temperature.

3 Thermal stress calculated from equation (1) when the temperature of

the heat sink is assumed to be 60°C and the assembly is essumed to be
stress-free at 20°C.
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APPENDIX E: PROPOSED ANALYSIS AND EXPERIMENTS FOR FURTHER
EVALUATION OF THE EFFECTS OF THERMAL SHOCK ON
THE STRESSES AND STRENGTH OF ANNULAR GLASS SEALS

By K. Kokini and C. Libove

1. Introduction.- In Chapter 8 an approximate thermal stress analy-
sis was presented for annular glass lead-through seals in packages subjected
to thermal shock. The seal was idealized as consisting of three concentric
components: a lead-through wire of circular cross section, a glass annulus
surrounding the wire, and a metal annulus surrounding the glass. The tem-
peratures in the latter annulus and the lead were assumed to be uniform
(though time-varying) within those two components. Axial (that 1s, parallel
to the lead) heat conduction between the thermal shock test fluid and the
glass was neglected, and a state of plane stress was assumed in the glass.
As a result, the temperatures and stresses in the glass at any instant of
time became functions only of the radial cordinate r, that is, they were
independent of the axial coordirate z.

In this appendix improvements in the analysis are proposed, as well
as thermal shock experiments on simple models of annular glass seals. The
analytical improvements are in the direction of including axial heat flow
in the glass and the variation of the glass tempcratures and stresses in
the axial direction, while retaining all the other aspects of the model
analyzed previously. (In particular, the assumption of axial symmetry
will be retained, as well as the assumption of uniform temperatures within
the lead and the base.) The purpose of the proposed experiments is to

correlate any observed thermal shock damage with (a) the geometrical para-
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meters of the seal, (b) the depth of oxide produced in the metal in the

pre-oxidation step of the sealing process, and (c) the calculated stresses
in the glass and the glass~to-metal interfaces.

The details of the proposed work are described more fully 1in the
following sections, in which we shall continue to use the‘notation of

Chapter 8 whenever that notation is still applicable.

2. Improved Temperature Analysis.- The model for temperature analysis,

including the effects of axial heat flow in the glass, can still be taken
as shown in Figure 2 of Chapter 8 (p. 197), provided that an axial coor-
dinate z, positive upward, is added to the diagram. The origin of the
z-coordinates will be taken at the lower (inside) flat surface of the
glass annulus, so that z = 0 will identify that surface, and z = £, where
2 1s the axial thickness of the glass annulus, will identify the upper
surface.

The temperature T(r,z,t) in the glass is now governed by the field

equation
aT
i D ¢V

the initial condition

T(r,z,0) = To’ (2)

the metal-glass interface boundary conditions

e V (31) = hA [T -(T) ]+ k.- 27 ' (EI) dz (3)
Pk’ e Bt 0 = r=a g - a ar’
r=a ) r=a
v Ab 2
b @I = h — - - . T N
k% N (ar) = h N (T, (T)r=b] k_ -« 2nb J (ar) dz , (4)
r=b =b .
|
!
I
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the fluid-glass interface boundary condition

aT =
kg (3-7)”1 =h[T-D,IT, (5)

and the boundary condition

aT
k. D) -
g dz 220 o, . (6a)

corresponding to the assumption of an adiabatic boundary at the glass
surface that is inside the package. Anticipating that calculations will
have to be made for test specimens in which both flat surfaces of the
glass annulus will be exposed to the thermal shock test fluid, we note
that for such specimens Equation (6a) must be replaced by

oT T e
kg G) BT, o) - (6b)

It will be noted that the same h is used in Equations (3) and (4) as in
Equations (5) and (7); that is, the heat transfer coefficient between
fluid and metal is assumed to be the same as that between fluid and glass.

Introducing the dimensionless variables

x = r/a Z=2z/4% ¢
2 2
= = 1k 8
y tag/a 1 8/pgcga (8)
T _-T(r,z,1)
t = —T T = t(x,2,y) 9)
® o
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ha \
A' = =0 B' = Prk'y
2"2kg 2n8p ¢ a2
g 8
e L a ot = Pkk'b (10)
252k N b 2wy abN
iy Psg
E' = Eg/kg L =1%/a

we can convert Equations (1) through (6) to the following dimensionless

form:

2 2
3!:.:.3_;;4._1_@&4.1_2__3_; (11)
M S A}
t(x,Z,0) =1 (12)
b ot
A d - v ' (=—
Jo(a")m I 13
s P
-l &5 4z = c' (t) + DD (14)
f0 3% x=b/a x=b/a % x=b/a
at
- =E'. (1), (15)
z,,, “z=1
at
) =0 (16a)
iz,
(%%- =E' (), g (16b)
2=0

Equations (11) to (16) will be solved by the finite-difference method.
Because of the large number of finite difference equations resulting from

any reasonably fine grid, it has been found, through trial calculations,

-337-




that an iterative solution of the equations is more expedient and economical

than a direct solution.

3. Improved Stress Analysis.- Once the temperature distribution is

known for any given instant of time the stresses produced by that tempera-
ture distribution at that instant of time can be determined. The model
to be used for this stress analysis is that shown in Figure 3 of Chapter 8
{p. 200). Again a z-coordinate must be added to the diagram, as was done
for the temperature analysis model in Section 2 above.

The most expedient tool for the determination of the stresses is the
principle of minimum strain energy, whereby the true distribution of

displacements is that which minimizes the strain energy (with proper

allowance for the presence of thermal strains). This principle will be
implemented with the aid of a finite~difference grid whereby the strains
can be expressed in terms of first order finite differences of displace-
ments at the grid points. This energy method avoids the necessity of
giving explicit attention to the zero-stress boundary conditions at the
top and the bottom surfaces of the model and to the stress-continuity con-
ditions at the two cylindrical interfaces between the glass and the metal.
Thus an awkward surfeit of equations at the corners of the metal-glass
interfaces is avoided. The method described above is essentially a finite
element method except for the fact that an explicit distribution of dis-
placements within the elements (the grid cells) does not have to be postu-
lated.

The finite-difference grid to be used is shown in Figure 1. The grid
stations arc¢ numbered i{=0, 1, ..., P in the radial direction with 1=0

corresponding to the axis of the lead (r=0) and i1=P to the outer boundary
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{(r=c) of the base. In the axial direction the grid station numbering is
jJ=1, 2, ..., N, with j=1 and N corresponding to the lower and upper
boundaries, respectively, of the model. It will be assumed that the grid
is laid out in such a way that the metal-glass interfaces (r=a and r=b)
correspond exactly to certain grid lines. Thus, every cell contains a
single material -- either metal or glass, rather than a mixture of
materials.

Any grid point will be identified by the pair of numbers (i,j)
associated with the two grid lines that intersect at that point, and r,
and zj will denote the r and z coordinates of that grid point. Any cell,
like the one shown shaded in Figure 1, can be identified by the pair of
numbers (i,j) associated with the grid point at its lower left corner.
The radial and axial dimensions of the cell will be denoted (Ar)1 and
(Az)j, respectively. (Ar)i may vary in the r-direction and (Az)j in the

z-direction. Thke shaded cell in Figure 1 is the cross csection of a ring

of material whose volume is

(AV)ij = zn?i(Ar)i(Az)j an
where
T, = x(r, +r,.) (18)
i 2 i i+1

is the mean radius of the cell. The Young's modulus E, shear modulus G,
Poisson's ratio v and thermal expansion coefficient a for the material im

this ring will be denoted Ei’ G and ags respectively; and xi will

i \Ji

denote the value of A for the cell material, where
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r" C——

Az Ev

= avv) -2y (19)

It is assumed that some datum configuration exists in which the
temperature is uniform at the value 'I‘d and the stress distribution
throughout the material is known (e.g., the material mav be stress~free
if the temperature is uniform at the set point of the glass or uniform
at room temperature). The displacement and strains in this datum con-~
figuration will be taken as zero. The objective of the stress analysis
is to determina= the displacements, strains and stress increments produced
by any given temperature distribution T(r,z) other than the uniform datum
temperature Td.

The radial (r-wise) and axial (z-wise) displacements will be dencted
by u(r,z) and w(r,z), respectively; and the values of u and w at the grid

point (1,j), in particular, will be denoted by u_ ., and wij’ respectively.

1]

The displacements u(r,z) and w(r,z) give rise to the following strains

(radial, axial, circumferential, and shear, respectively).

du w u Jdu dw
€ = T = — = — = — —_— 20
r ar €z 3z Ee r er 3z ar 20

Mean values of these strains for the ring of material represented by the

shaded shell of Figure 1 will be denoted by € o € s €4 and Yez ®

SIS N & 1j
respectively, and will be calculated as follows:

1 M+, 7 Yy, Yi+l,441 7 “11+1]
€ == . + : (21)
rij 2 [ (Ar)1 (Ar)i
1 Y,341 T Yy Ve, 94 T Vi,
Cz = 2[ (Az) + (AZ) (22)
1] J ]
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u, . u . u . u
_é[?u+g.+m+_a¢ﬂ+gﬂ;m for 1 40

1 Ti+l 't Ti+1
€g = (23)
1 1] Y41, . Y141, 941
—2- -“r——’-l + —*]:——’J——-' for i = 0
i+1 i+1
! [,“’itl_q_”._“u o S T Vg
rzij 2 (Ar)i (Ar)i
Y941 T Vi N Yi41, 541 T Yiel, g (24)
(Az)j (AZ)j

The second of Equations (23) was obtained from the first by imposing the

Liii
(%)

i=0 i=1

regularity condition
(UI.)
r,
i

The boundary condition of zero radial displacement along the axis of the

lead will be satisfied by specifying that

uij =0 for i=20 (26)

and rigid-body movement will be eliminated by specifying that

wij =0 for (1,j) = (0,1) 27)

The mean temperature rise (AT)i , relative to the datum, in the shaded

3

cell of Figure 1 can be estimated as

D), =3 (T ) - T (28)

= + +
13 15 Y Taen,5 Y T g Y Tae, g0 d
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where Ti T , etc. are the values of T(r,z) assoclated with the corners

3 T1i41,3

of the cell, as obtained by the temperature analysis of Section 2. The

correspondirg mean thermal strain is !

4 (29)

t
€

14 = ai(AT)

We now turn to the evaluation of the strain erergy of the system of

rings represented by the grid rectangles of Figure 1. In the absence of
thermal effects, the strain-energy density U* of an isotropic elastic

material in a state of axially symmetfic deformation is

2 2

2 1
+ Ee ) + E Ger (30) 1

x* _ A 2 2
U 2 (sr + €, + ee) + G(er + €,

where A i1s defined by Equation (19)+. If there is a thermal strain et,

it must be subtracted from each of the normal strains in (30), which

resolts in the following modified expression for the strain-energy density:

2 2

P 2,
U 2(e,r+s;z+e:e) +G(er +ez

2y L1
+ €g ) + 2 Ger (31)
where
€ € € €, €, € €9 €q € (32) 1

Thus, the strain energy density U:j in the ring whose cross section is the

shaded cell of Figure 1 is

A
%* i 2
u,, = = (¢ + ¢! el )
ij 2 rij zij + eij
2 2 2 1 2
+ G, (e + ¢! e . )Y+ =G,y
1 rij 244 843 2 4 rzij (33)

* See S. Timoshenko and J.N. Goodier, "Theory of Elasticity," 2nd
ed., McGraw-Hill, NY, 1970, p. 246.
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ij

Multiplication of U by the volume of the ring gives

_ *
(AU)ij = Uij (AV)ij (35)

for the strain energy of the ring, and summation over all the rings gives

P~1 N-1
LIE D S N (A (36)
1=0 j=1 ]

for the total strain energy.

In order to determine the nodal displacements uij and wij’ U must
be minimized with respect to each of those displacements whose value is
not already fixed by geometric constants. Thus, the following system

of equations must be written:

-344-




7
i=20,1,2,...,P
2Uo0 | j=1,2,...,N
Bwij
with i=0,j=1 excluded

Equations (37) will be a system of linear equations in the uij and wij to
be solved simultaneously for those unknowns. With uij and w1j determined,
the cell strains can be found from Equations (21) to (24), and the strains
due to stress alone from Equations (34). The stresses in any cell can then
be found by substituting the latter strains into the generalized Hooke's
law, using the elastic constants that are appropriate for the material in

that cell.

4. Experimental Program.- By the methods discussed in the two pre-

ceding sections, omne can obtain estiﬁates of the stress distributions
in the glass annulus as functions of time. However, the determination of
those stresses is not an end in itself. It is equally important for the
designer, screener, or stress analyst to be able to draw conclusions as
to whether or not those stresses will damage the seal to the extent that
hermeticity of the package is compromised during and/or after the thermal
shock test. Therefore, besides knowing the stresses, one must also know
what the "allowables" are for those stresses.

The determination of allowables is z difficult problem. There is some
strength data available for glass, but virtually none of it is directly
applicable to the glass in situ in the scal, nor to the interfacial

material formed by the glass and the oxide of whatever metal (usually




Kovar) it is bonded to. The direct determination of strengths for the

glass and intertacial materials in a seal is virtually impossible for the

following reasons: (a) The seals are so small that it would be extremely

difficult to handle and test any samples cut from therm; (b) cven if the
small samples could be handled and tested, considerable damage might be
done to them in the nrocess of cutting; and (c) even if extreme care were
taken to insure no damage due to cutting, the creation of new surfaces
by the cutting could have a basic weakening effect. 1t is true that
large scale models of seals could be fabricated that would be physically
easier to handle, but then a scale effect would be introduced as another
uncertainty along with those produced by the cutting of test specimens
from the model.

In view of the difficulties described above, it was decided that

allowable stresses for the glass in an annular lead-~through seal cculd

best be determined by an indirect method -- that is, by fabricating seals,

subjecting them to thermal shock tests of various levels of severity,
examining them (visually and by test) for damige, and correlating any
observed damage with the theoretical stress histories and distributions
computed for them by the methods of Sections 2 and 3.

The test specimens to be used in this study are shown schematically
in Figure 2. They consist of commercially available TO~8 Kovar eyelets
with a drilled central hole in which a Kovar lead is inserted and sealed
with Corning 7052 glass. This combination of materials (Kovar and 7052
glass) 1is also widely used in the electronics industry, because their

matching thermal contractions from the set point to room temperature

eads theoretically to a stress-free seal at room temperature. There will




*suawyd3ds 38331 pasodoad 3yl JO SUOTSUAWIP 3O 9[QEB3I PUE UOFIIAS SSOIS dJIeWAYIS -7 andTyg

h—gq2 —
|

L4
(avaox) IL —

~347-

00s” 1118 0¢0°
GZ9° VAt 090°
91¢L” 174 B R YA
$e9° oyt1* 050"

1313x3 m-oa.nnl/mrl
z6v" | 160" | 0v0° W2 08

P T2 57 STiL SSV'ID 7S0L ONINY0D Am

xr

N TN O

("NI) SNOISN3IWIQ | NIWID3dS l\
avad1 ¥vAON




be six different geometries, as indicated by the table in Figure 2 and

twenty-five samples of each geometry. The sealing will be performed by
the Air Products and Chemicals Co. of Allentown, PA in a furnace with a
controlled atmosphere. Prior to the sealing the Kovar parts alone will
be subjected to an oxidation process leading to a known and reproducible

depth of oxide on the metal surfaces that will later be in contact with

the glass.

The testing procedure will consist of the following steps:

(a) The sample 1s heated to a known temperature in an oven.

(b) It is then immediately inserted into a constant-temperature oil bath
at a lower temperature and left there long enough for its temperature
to become stabilized at that of the bath.

(c) The sample is removed from the bath, cleaned, and placed in a dye
penetrant intended to reveal any cracking. (The sample will have also
been subjected to the dye penetrant test before the thermal shock
in order to insure the absence of pre-existing cracks.)

(d) The sample will then be subjected to a "residual torque strength"
test, i.e., a test in which the lead is twisted in order to deter-

mine what torque (if any) will cause it to rotate in the seal.

The testing procedure just described will first be carried out on N
one geometry of test specimen but with several samples representing
different ievels of pre-oxidation, in order to establish an optimim pre-
oxidation level. (The findings in this phase of the program will be com-
pared with the recommendations of L. Zakraysek of the General Electric Co.

of Syracuse with regard to optimum thickness of the intergrannular oxide
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layer.) Once the optimum oxide level has been determined, that oxide
level will be used in the remailning test specimens, and the main test
variable for each geometry will then be the temperature of the specimen
prior to its insertion in the oil bath.

In order to try out the experimental procedure and the associated
apparatus, six preliminary test specimens of the Type 2 geometry were
fabricated and sealed by the Air Products Co., then thermal shock tested
at Syracuse University, using water (rather than oil) as the test fluid.
Six temperature differences AT were employed between oven temperature
and water bath temperature, including AT = 0 (no thermal shock). The
following table of residual torque strengths shows that there was no

reduction of strength due to the thermal shock levels employed.

AT (°F) Residual Torque
Strength (1b -in.)
(1) 82
324 80
524 81
624 95
724 85
924 89

However, for some of the specimens the dye pemetrant treatment and visual
examination after the thermal shock, but prior to the torque test, did
reveal damage. The damage was in the form of a circumferential opening
at the lead-glass interface. As the table shows, the subsequent torque
strength was not affected by the presence of such cracks, which implies
that there was no permanent damage done to the seal by the thermal shock

test. However, the possibility of a healing process cannot be ruled

=349-
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out. That i{s, there may have been a significant transient separation
between lead wire and glass during the thermal shock, followed by virtual
closure of the gap when the specimen temperature became once again
uniform at room temperature. Methods will be sought for detecting such
transient separations.

It is expected that the experiments and the related calculations
will show that the severity and damage of a thermal shock test depends
not just on the temperature excursion involved, but also on the geometrical

parameters of the seal.
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